Solve for p
p = \frac{3}{2} = 1\frac{1}{2} = 1.5
p = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Share
Copied to clipboard
4p^{2}-9=0
Divide both sides by 10.
\left(2p-3\right)\left(2p+3\right)=0
Consider 4p^{2}-9. Rewrite 4p^{2}-9 as \left(2p\right)^{2}-3^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
p=\frac{3}{2} p=-\frac{3}{2}
To find equation solutions, solve 2p-3=0 and 2p+3=0.
40p^{2}=90
Add 90 to both sides. Anything plus zero gives itself.
p^{2}=\frac{90}{40}
Divide both sides by 40.
p^{2}=\frac{9}{4}
Reduce the fraction \frac{90}{40} to lowest terms by extracting and canceling out 10.
p=\frac{3}{2} p=-\frac{3}{2}
Take the square root of both sides of the equation.
40p^{2}-90=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
p=\frac{0±\sqrt{0^{2}-4\times 40\left(-90\right)}}{2\times 40}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 40 for a, 0 for b, and -90 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{0±\sqrt{-4\times 40\left(-90\right)}}{2\times 40}
Square 0.
p=\frac{0±\sqrt{-160\left(-90\right)}}{2\times 40}
Multiply -4 times 40.
p=\frac{0±\sqrt{14400}}{2\times 40}
Multiply -160 times -90.
p=\frac{0±120}{2\times 40}
Take the square root of 14400.
p=\frac{0±120}{80}
Multiply 2 times 40.
p=\frac{3}{2}
Now solve the equation p=\frac{0±120}{80} when ± is plus. Reduce the fraction \frac{120}{80} to lowest terms by extracting and canceling out 40.
p=-\frac{3}{2}
Now solve the equation p=\frac{0±120}{80} when ± is minus. Reduce the fraction \frac{-120}{80} to lowest terms by extracting and canceling out 40.
p=\frac{3}{2} p=-\frac{3}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}