Evaluate
4.59375
Factor
\frac{3 \cdot 7 ^ {2}}{2 ^ {5}} = 4\frac{19}{32} = 4.59375
Share
Copied to clipboard
40\times \frac{3}{8}\left(1-0.004|0-75|\right)\left(0.7+\frac{7.5}{150}\right)\left(1-\frac{5}{12}\right)
Reduce the fraction \frac{15}{40} to lowest terms by extracting and canceling out 5.
\frac{40\times 3}{8}\left(1-0.004|0-75|\right)\left(0.7+\frac{7.5}{150}\right)\left(1-\frac{5}{12}\right)
Express 40\times \frac{3}{8} as a single fraction.
\frac{120}{8}\left(1-0.004|0-75|\right)\left(0.7+\frac{7.5}{150}\right)\left(1-\frac{5}{12}\right)
Multiply 40 and 3 to get 120.
15\left(1-0.004|0-75|\right)\left(0.7+\frac{7.5}{150}\right)\left(1-\frac{5}{12}\right)
Divide 120 by 8 to get 15.
15\left(1-0.004|-75|\right)\left(0.7+\frac{7.5}{150}\right)\left(1-\frac{5}{12}\right)
Subtract 75 from 0 to get -75.
15\left(1-0.004\times 75\right)\left(0.7+\frac{7.5}{150}\right)\left(1-\frac{5}{12}\right)
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -75 is 75.
15\left(1-0.3\right)\left(0.7+\frac{7.5}{150}\right)\left(1-\frac{5}{12}\right)
Multiply 0.004 and 75 to get 0.3.
15\times 0.7\left(0.7+\frac{7.5}{150}\right)\left(1-\frac{5}{12}\right)
Subtract 0.3 from 1 to get 0.7.
10.5\left(0.7+\frac{7.5}{150}\right)\left(1-\frac{5}{12}\right)
Multiply 15 and 0.7 to get 10.5.
10.5\left(0.7+\frac{75}{1500}\right)\left(1-\frac{5}{12}\right)
Expand \frac{7.5}{150} by multiplying both numerator and the denominator by 10.
10.5\left(0.7+\frac{1}{20}\right)\left(1-\frac{5}{12}\right)
Reduce the fraction \frac{75}{1500} to lowest terms by extracting and canceling out 75.
10.5\left(\frac{7}{10}+\frac{1}{20}\right)\left(1-\frac{5}{12}\right)
Convert decimal number 0.7 to fraction \frac{7}{10}.
10.5\left(\frac{14}{20}+\frac{1}{20}\right)\left(1-\frac{5}{12}\right)
Least common multiple of 10 and 20 is 20. Convert \frac{7}{10} and \frac{1}{20} to fractions with denominator 20.
10.5\times \frac{14+1}{20}\left(1-\frac{5}{12}\right)
Since \frac{14}{20} and \frac{1}{20} have the same denominator, add them by adding their numerators.
10.5\times \frac{15}{20}\left(1-\frac{5}{12}\right)
Add 14 and 1 to get 15.
10.5\times \frac{3}{4}\left(1-\frac{5}{12}\right)
Reduce the fraction \frac{15}{20} to lowest terms by extracting and canceling out 5.
\frac{21}{2}\times \frac{3}{4}\left(1-\frac{5}{12}\right)
Convert decimal number 10.5 to fraction \frac{105}{10}. Reduce the fraction \frac{105}{10} to lowest terms by extracting and canceling out 5.
\frac{21\times 3}{2\times 4}\left(1-\frac{5}{12}\right)
Multiply \frac{21}{2} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{63}{8}\left(1-\frac{5}{12}\right)
Do the multiplications in the fraction \frac{21\times 3}{2\times 4}.
\frac{63}{8}\left(\frac{12}{12}-\frac{5}{12}\right)
Convert 1 to fraction \frac{12}{12}.
\frac{63}{8}\times \frac{12-5}{12}
Since \frac{12}{12} and \frac{5}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{63}{8}\times \frac{7}{12}
Subtract 5 from 12 to get 7.
\frac{63\times 7}{8\times 12}
Multiply \frac{63}{8} times \frac{7}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{441}{96}
Do the multiplications in the fraction \frac{63\times 7}{8\times 12}.
\frac{147}{32}
Reduce the fraction \frac{441}{96} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}