Factor
\left(4x+1\right)\left(10x+1\right)
Evaluate
\left(4x+1\right)\left(10x+1\right)
Graph
Share
Copied to clipboard
a+b=14 ab=40\times 1=40
Factor the expression by grouping. First, the expression needs to be rewritten as 40x^{2}+ax+bx+1. To find a and b, set up a system to be solved.
1,40 2,20 4,10 5,8
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 40.
1+40=41 2+20=22 4+10=14 5+8=13
Calculate the sum for each pair.
a=4 b=10
The solution is the pair that gives sum 14.
\left(40x^{2}+4x\right)+\left(10x+1\right)
Rewrite 40x^{2}+14x+1 as \left(40x^{2}+4x\right)+\left(10x+1\right).
4x\left(10x+1\right)+10x+1
Factor out 4x in 40x^{2}+4x.
\left(10x+1\right)\left(4x+1\right)
Factor out common term 10x+1 by using distributive property.
40x^{2}+14x+1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-14±\sqrt{14^{2}-4\times 40}}{2\times 40}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-14±\sqrt{196-4\times 40}}{2\times 40}
Square 14.
x=\frac{-14±\sqrt{196-160}}{2\times 40}
Multiply -4 times 40.
x=\frac{-14±\sqrt{36}}{2\times 40}
Add 196 to -160.
x=\frac{-14±6}{2\times 40}
Take the square root of 36.
x=\frac{-14±6}{80}
Multiply 2 times 40.
x=-\frac{8}{80}
Now solve the equation x=\frac{-14±6}{80} when ± is plus. Add -14 to 6.
x=-\frac{1}{10}
Reduce the fraction \frac{-8}{80} to lowest terms by extracting and canceling out 8.
x=-\frac{20}{80}
Now solve the equation x=\frac{-14±6}{80} when ± is minus. Subtract 6 from -14.
x=-\frac{1}{4}
Reduce the fraction \frac{-20}{80} to lowest terms by extracting and canceling out 20.
40x^{2}+14x+1=40\left(x-\left(-\frac{1}{10}\right)\right)\left(x-\left(-\frac{1}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{1}{10} for x_{1} and -\frac{1}{4} for x_{2}.
40x^{2}+14x+1=40\left(x+\frac{1}{10}\right)\left(x+\frac{1}{4}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
40x^{2}+14x+1=40\times \frac{10x+1}{10}\left(x+\frac{1}{4}\right)
Add \frac{1}{10} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
40x^{2}+14x+1=40\times \frac{10x+1}{10}\times \frac{4x+1}{4}
Add \frac{1}{4} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
40x^{2}+14x+1=40\times \frac{\left(10x+1\right)\left(4x+1\right)}{10\times 4}
Multiply \frac{10x+1}{10} times \frac{4x+1}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
40x^{2}+14x+1=40\times \frac{\left(10x+1\right)\left(4x+1\right)}{40}
Multiply 10 times 4.
40x^{2}+14x+1=\left(10x+1\right)\left(4x+1\right)
Cancel out 40, the greatest common factor in 40 and 40.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}