Solve for x
x=\frac{\sqrt{42}}{4}-\frac{3}{2}\approx 0.120185175
x=-\frac{\sqrt{42}}{4}-\frac{3}{2}\approx -3.120185175
Graph
Share
Copied to clipboard
40x^{2}+120x-15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-120±\sqrt{120^{2}-4\times 40\left(-15\right)}}{2\times 40}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 40 for a, 120 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-120±\sqrt{14400-4\times 40\left(-15\right)}}{2\times 40}
Square 120.
x=\frac{-120±\sqrt{14400-160\left(-15\right)}}{2\times 40}
Multiply -4 times 40.
x=\frac{-120±\sqrt{14400+2400}}{2\times 40}
Multiply -160 times -15.
x=\frac{-120±\sqrt{16800}}{2\times 40}
Add 14400 to 2400.
x=\frac{-120±20\sqrt{42}}{2\times 40}
Take the square root of 16800.
x=\frac{-120±20\sqrt{42}}{80}
Multiply 2 times 40.
x=\frac{20\sqrt{42}-120}{80}
Now solve the equation x=\frac{-120±20\sqrt{42}}{80} when ± is plus. Add -120 to 20\sqrt{42}.
x=\frac{\sqrt{42}}{4}-\frac{3}{2}
Divide -120+20\sqrt{42} by 80.
x=\frac{-20\sqrt{42}-120}{80}
Now solve the equation x=\frac{-120±20\sqrt{42}}{80} when ± is minus. Subtract 20\sqrt{42} from -120.
x=-\frac{\sqrt{42}}{4}-\frac{3}{2}
Divide -120-20\sqrt{42} by 80.
x=\frac{\sqrt{42}}{4}-\frac{3}{2} x=-\frac{\sqrt{42}}{4}-\frac{3}{2}
The equation is now solved.
40x^{2}+120x-15=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
40x^{2}+120x-15-\left(-15\right)=-\left(-15\right)
Add 15 to both sides of the equation.
40x^{2}+120x=-\left(-15\right)
Subtracting -15 from itself leaves 0.
40x^{2}+120x=15
Subtract -15 from 0.
\frac{40x^{2}+120x}{40}=\frac{15}{40}
Divide both sides by 40.
x^{2}+\frac{120}{40}x=\frac{15}{40}
Dividing by 40 undoes the multiplication by 40.
x^{2}+3x=\frac{15}{40}
Divide 120 by 40.
x^{2}+3x=\frac{3}{8}
Reduce the fraction \frac{15}{40} to lowest terms by extracting and canceling out 5.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=\frac{3}{8}+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=\frac{3}{8}+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{21}{8}
Add \frac{3}{8} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{2}\right)^{2}=\frac{21}{8}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{21}{8}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{42}}{4} x+\frac{3}{2}=-\frac{\sqrt{42}}{4}
Simplify.
x=\frac{\sqrt{42}}{4}-\frac{3}{2} x=-\frac{\sqrt{42}}{4}-\frac{3}{2}
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}