40 \% \times x+120=(9600-x) \times 40 \% -120
Solve for x
x=4500
Graph
Share
Copied to clipboard
\frac{2}{5}x+120=\left(9600-x\right)\times \frac{40}{100}-120
Reduce the fraction \frac{40}{100} to lowest terms by extracting and canceling out 20.
\frac{2}{5}x+120=\left(9600-x\right)\times \frac{2}{5}-120
Reduce the fraction \frac{40}{100} to lowest terms by extracting and canceling out 20.
\frac{2}{5}x+120=9600\times \frac{2}{5}-x\times \frac{2}{5}-120
Use the distributive property to multiply 9600-x by \frac{2}{5}.
\frac{2}{5}x+120=\frac{9600\times 2}{5}-x\times \frac{2}{5}-120
Express 9600\times \frac{2}{5} as a single fraction.
\frac{2}{5}x+120=\frac{19200}{5}-x\times \frac{2}{5}-120
Multiply 9600 and 2 to get 19200.
\frac{2}{5}x+120=3840-x\times \frac{2}{5}-120
Divide 19200 by 5 to get 3840.
\frac{2}{5}x+120=3840-\frac{2}{5}x-120
Multiply -1 and \frac{2}{5} to get -\frac{2}{5}.
\frac{2}{5}x+120=3720-\frac{2}{5}x
Subtract 120 from 3840 to get 3720.
\frac{2}{5}x+120+\frac{2}{5}x=3720
Add \frac{2}{5}x to both sides.
\frac{4}{5}x+120=3720
Combine \frac{2}{5}x and \frac{2}{5}x to get \frac{4}{5}x.
\frac{4}{5}x=3720-120
Subtract 120 from both sides.
\frac{4}{5}x=3600
Subtract 120 from 3720 to get 3600.
x=3600\times \frac{5}{4}
Multiply both sides by \frac{5}{4}, the reciprocal of \frac{4}{5}.
x=\frac{3600\times 5}{4}
Express 3600\times \frac{5}{4} as a single fraction.
x=\frac{18000}{4}
Multiply 3600 and 5 to get 18000.
x=4500
Divide 18000 by 4 to get 4500.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}