Solve for x
x=\frac{\sqrt{5856739907561}}{32700}-\frac{8671473}{10900}\approx -721.539717804
x=-\frac{\sqrt{5856739907561}}{32700}-\frac{8671473}{10900}\approx -869.556245499
Graph
Share
Copied to clipboard
4.905x^{2}+7804.3257x+3077492=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7804.3257±\sqrt{7804.3257^{2}-4\times 4.905\times 3077492}}{2\times 4.905}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4.905 for a, 7804.3257 for b, and 3077492 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7804.3257±\sqrt{60907499.63168049-4\times 4.905\times 3077492}}{2\times 4.905}
Square 7804.3257 by squaring both the numerator and the denominator of the fraction.
x=\frac{-7804.3257±\sqrt{60907499.63168049-19.62\times 3077492}}{2\times 4.905}
Multiply -4 times 4.905.
x=\frac{-7804.3257±\sqrt{60907499.63168049-60380393.04}}{2\times 4.905}
Multiply -19.62 times 3077492.
x=\frac{-7804.3257±\sqrt{527106.59168049}}{2\times 4.905}
Add 60907499.63168049 to -60380393.04 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-7804.3257±\frac{3\sqrt{5856739907561}}{10000}}{2\times 4.905}
Take the square root of 527106.59168049.
x=\frac{-7804.3257±\frac{3\sqrt{5856739907561}}{10000}}{9.81}
Multiply 2 times 4.905.
x=\frac{3\sqrt{5856739907561}-78043257}{9.81\times 10000}
Now solve the equation x=\frac{-7804.3257±\frac{3\sqrt{5856739907561}}{10000}}{9.81} when ± is plus. Add -7804.3257 to \frac{3\sqrt{5856739907561}}{10000}.
x=\frac{\sqrt{5856739907561}}{32700}-\frac{8671473}{10900}
Divide \frac{-78043257+3\sqrt{5856739907561}}{10000} by 9.81 by multiplying \frac{-78043257+3\sqrt{5856739907561}}{10000} by the reciprocal of 9.81.
x=\frac{-3\sqrt{5856739907561}-78043257}{9.81\times 10000}
Now solve the equation x=\frac{-7804.3257±\frac{3\sqrt{5856739907561}}{10000}}{9.81} when ± is minus. Subtract \frac{3\sqrt{5856739907561}}{10000} from -7804.3257.
x=-\frac{\sqrt{5856739907561}}{32700}-\frac{8671473}{10900}
Divide \frac{-78043257-3\sqrt{5856739907561}}{10000} by 9.81 by multiplying \frac{-78043257-3\sqrt{5856739907561}}{10000} by the reciprocal of 9.81.
x=\frac{\sqrt{5856739907561}}{32700}-\frac{8671473}{10900} x=-\frac{\sqrt{5856739907561}}{32700}-\frac{8671473}{10900}
The equation is now solved.
4.905x^{2}+7804.3257x+3077492=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4.905x^{2}+7804.3257x+3077492-3077492=-3077492
Subtract 3077492 from both sides of the equation.
4.905x^{2}+7804.3257x=-3077492
Subtracting 3077492 from itself leaves 0.
\frac{4.905x^{2}+7804.3257x}{4.905}=-\frac{3077492}{4.905}
Divide both sides of the equation by 4.905, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{7804.3257}{4.905}x=-\frac{3077492}{4.905}
Dividing by 4.905 undoes the multiplication by 4.905.
x^{2}+\frac{8671473}{5450}x=-\frac{3077492}{4.905}
Divide 7804.3257 by 4.905 by multiplying 7804.3257 by the reciprocal of 4.905.
x^{2}+\frac{8671473}{5450}x=-\frac{615498400}{981}
Divide -3077492 by 4.905 by multiplying -3077492 by the reciprocal of 4.905.
x^{2}+\frac{8671473}{5450}x+\frac{8671473}{10900}^{2}=-\frac{615498400}{981}+\frac{8671473}{10900}^{2}
Divide \frac{8671473}{5450}, the coefficient of the x term, by 2 to get \frac{8671473}{10900}. Then add the square of \frac{8671473}{10900} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{8671473}{5450}x+\frac{75194443989729}{118810000}=-\frac{615498400}{981}+\frac{75194443989729}{118810000}
Square \frac{8671473}{10900} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{8671473}{5450}x+\frac{75194443989729}{118810000}=\frac{5856739907561}{1069290000}
Add -\frac{615498400}{981} to \frac{75194443989729}{118810000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{8671473}{10900}\right)^{2}=\frac{5856739907561}{1069290000}
Factor x^{2}+\frac{8671473}{5450}x+\frac{75194443989729}{118810000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{8671473}{10900}\right)^{2}}=\sqrt{\frac{5856739907561}{1069290000}}
Take the square root of both sides of the equation.
x+\frac{8671473}{10900}=\frac{\sqrt{5856739907561}}{32700} x+\frac{8671473}{10900}=-\frac{\sqrt{5856739907561}}{32700}
Simplify.
x=\frac{\sqrt{5856739907561}}{32700}-\frac{8671473}{10900} x=-\frac{\sqrt{5856739907561}}{32700}-\frac{8671473}{10900}
Subtract \frac{8671473}{10900} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}