Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4.905x^{2}+10x-150=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{10^{2}-4\times 4.905\left(-150\right)}}{2\times 4.905}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4.905 for a, 10 for b, and -150 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 4.905\left(-150\right)}}{2\times 4.905}
Square 10.
x=\frac{-10±\sqrt{100-19.62\left(-150\right)}}{2\times 4.905}
Multiply -4 times 4.905.
x=\frac{-10±\sqrt{100+2943}}{2\times 4.905}
Multiply -19.62 times -150.
x=\frac{-10±\sqrt{3043}}{2\times 4.905}
Add 100 to 2943.
x=\frac{-10±\sqrt{3043}}{9.81}
Multiply 2 times 4.905.
x=\frac{\sqrt{3043}-10}{9.81}
Now solve the equation x=\frac{-10±\sqrt{3043}}{9.81} when ± is plus. Add -10 to \sqrt{3043}.
x=\frac{100\sqrt{3043}-1000}{981}
Divide -10+\sqrt{3043} by 9.81 by multiplying -10+\sqrt{3043} by the reciprocal of 9.81.
x=\frac{-\sqrt{3043}-10}{9.81}
Now solve the equation x=\frac{-10±\sqrt{3043}}{9.81} when ± is minus. Subtract \sqrt{3043} from -10.
x=\frac{-100\sqrt{3043}-1000}{981}
Divide -10-\sqrt{3043} by 9.81 by multiplying -10-\sqrt{3043} by the reciprocal of 9.81.
x=\frac{100\sqrt{3043}-1000}{981} x=\frac{-100\sqrt{3043}-1000}{981}
The equation is now solved.
4.905x^{2}+10x-150=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4.905x^{2}+10x-150-\left(-150\right)=-\left(-150\right)
Add 150 to both sides of the equation.
4.905x^{2}+10x=-\left(-150\right)
Subtracting -150 from itself leaves 0.
4.905x^{2}+10x=150
Subtract -150 from 0.
\frac{4.905x^{2}+10x}{4.905}=\frac{150}{4.905}
Divide both sides of the equation by 4.905, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{10}{4.905}x=\frac{150}{4.905}
Dividing by 4.905 undoes the multiplication by 4.905.
x^{2}+\frac{2000}{981}x=\frac{150}{4.905}
Divide 10 by 4.905 by multiplying 10 by the reciprocal of 4.905.
x^{2}+\frac{2000}{981}x=\frac{10000}{327}
Divide 150 by 4.905 by multiplying 150 by the reciprocal of 4.905.
x^{2}+\frac{2000}{981}x+\frac{1000}{981}^{2}=\frac{10000}{327}+\frac{1000}{981}^{2}
Divide \frac{2000}{981}, the coefficient of the x term, by 2 to get \frac{1000}{981}. Then add the square of \frac{1000}{981} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2000}{981}x+\frac{1000000}{962361}=\frac{10000}{327}+\frac{1000000}{962361}
Square \frac{1000}{981} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2000}{981}x+\frac{1000000}{962361}=\frac{30430000}{962361}
Add \frac{10000}{327} to \frac{1000000}{962361} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1000}{981}\right)^{2}=\frac{30430000}{962361}
Factor x^{2}+\frac{2000}{981}x+\frac{1000000}{962361}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1000}{981}\right)^{2}}=\sqrt{\frac{30430000}{962361}}
Take the square root of both sides of the equation.
x+\frac{1000}{981}=\frac{100\sqrt{3043}}{981} x+\frac{1000}{981}=-\frac{100\sqrt{3043}}{981}
Simplify.
x=\frac{100\sqrt{3043}-1000}{981} x=\frac{-100\sqrt{3043}-1000}{981}
Subtract \frac{1000}{981} from both sides of the equation.