Skip to main content
Solve for t_1
Tick mark Image

Similar Problems from Web Search

Share

t_{1}^{2}=\frac{450}{4.9}
Divide both sides by 4.9.
t_{1}^{2}=\frac{4500}{49}
Expand \frac{450}{4.9} by multiplying both numerator and the denominator by 10.
t_{1}=\frac{30\sqrt{5}}{7} t_{1}=-\frac{30\sqrt{5}}{7}
Take the square root of both sides of the equation.
t_{1}^{2}=\frac{450}{4.9}
Divide both sides by 4.9.
t_{1}^{2}=\frac{4500}{49}
Expand \frac{450}{4.9} by multiplying both numerator and the denominator by 10.
t_{1}^{2}-\frac{4500}{49}=0
Subtract \frac{4500}{49} from both sides.
t_{1}=\frac{0±\sqrt{0^{2}-4\left(-\frac{4500}{49}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{4500}{49} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t_{1}=\frac{0±\sqrt{-4\left(-\frac{4500}{49}\right)}}{2}
Square 0.
t_{1}=\frac{0±\sqrt{\frac{18000}{49}}}{2}
Multiply -4 times -\frac{4500}{49}.
t_{1}=\frac{0±\frac{60\sqrt{5}}{7}}{2}
Take the square root of \frac{18000}{49}.
t_{1}=\frac{30\sqrt{5}}{7}
Now solve the equation t_{1}=\frac{0±\frac{60\sqrt{5}}{7}}{2} when ± is plus.
t_{1}=-\frac{30\sqrt{5}}{7}
Now solve the equation t_{1}=\frac{0±\frac{60\sqrt{5}}{7}}{2} when ± is minus.
t_{1}=\frac{30\sqrt{5}}{7} t_{1}=-\frac{30\sqrt{5}}{7}
The equation is now solved.