Solve for t
t = \frac{5 \sqrt{9829} - 75}{49} \approx 8.585848294
t=\frac{-5\sqrt{9829}-75}{49}\approx -11.647072784
Share
Copied to clipboard
4.9t^{2}+15t-490=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-15±\sqrt{15^{2}-4\times 4.9\left(-490\right)}}{2\times 4.9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4.9 for a, 15 for b, and -490 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-15±\sqrt{225-4\times 4.9\left(-490\right)}}{2\times 4.9}
Square 15.
t=\frac{-15±\sqrt{225-19.6\left(-490\right)}}{2\times 4.9}
Multiply -4 times 4.9.
t=\frac{-15±\sqrt{225+9604}}{2\times 4.9}
Multiply -19.6 times -490.
t=\frac{-15±\sqrt{9829}}{2\times 4.9}
Add 225 to 9604.
t=\frac{-15±\sqrt{9829}}{9.8}
Multiply 2 times 4.9.
t=\frac{\sqrt{9829}-15}{9.8}
Now solve the equation t=\frac{-15±\sqrt{9829}}{9.8} when ± is plus. Add -15 to \sqrt{9829}.
t=\frac{5\sqrt{9829}-75}{49}
Divide -15+\sqrt{9829} by 9.8 by multiplying -15+\sqrt{9829} by the reciprocal of 9.8.
t=\frac{-\sqrt{9829}-15}{9.8}
Now solve the equation t=\frac{-15±\sqrt{9829}}{9.8} when ± is minus. Subtract \sqrt{9829} from -15.
t=\frac{-5\sqrt{9829}-75}{49}
Divide -15-\sqrt{9829} by 9.8 by multiplying -15-\sqrt{9829} by the reciprocal of 9.8.
t=\frac{5\sqrt{9829}-75}{49} t=\frac{-5\sqrt{9829}-75}{49}
The equation is now solved.
4.9t^{2}+15t-490=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4.9t^{2}+15t-490-\left(-490\right)=-\left(-490\right)
Add 490 to both sides of the equation.
4.9t^{2}+15t=-\left(-490\right)
Subtracting -490 from itself leaves 0.
4.9t^{2}+15t=490
Subtract -490 from 0.
\frac{4.9t^{2}+15t}{4.9}=\frac{490}{4.9}
Divide both sides of the equation by 4.9, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{15}{4.9}t=\frac{490}{4.9}
Dividing by 4.9 undoes the multiplication by 4.9.
t^{2}+\frac{150}{49}t=\frac{490}{4.9}
Divide 15 by 4.9 by multiplying 15 by the reciprocal of 4.9.
t^{2}+\frac{150}{49}t=100
Divide 490 by 4.9 by multiplying 490 by the reciprocal of 4.9.
t^{2}+\frac{150}{49}t+\frac{75}{49}^{2}=100+\frac{75}{49}^{2}
Divide \frac{150}{49}, the coefficient of the x term, by 2 to get \frac{75}{49}. Then add the square of \frac{75}{49} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{150}{49}t+\frac{5625}{2401}=100+\frac{5625}{2401}
Square \frac{75}{49} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{150}{49}t+\frac{5625}{2401}=\frac{245725}{2401}
Add 100 to \frac{5625}{2401}.
\left(t+\frac{75}{49}\right)^{2}=\frac{245725}{2401}
Factor t^{2}+\frac{150}{49}t+\frac{5625}{2401}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{75}{49}\right)^{2}}=\sqrt{\frac{245725}{2401}}
Take the square root of both sides of the equation.
t+\frac{75}{49}=\frac{5\sqrt{9829}}{49} t+\frac{75}{49}=-\frac{5\sqrt{9829}}{49}
Simplify.
t=\frac{5\sqrt{9829}-75}{49} t=\frac{-5\sqrt{9829}-75}{49}
Subtract \frac{75}{49} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}