4.6 \times 1.25 + 1 \frac { 1 } { 4 } \times 4.3 - 0.9 \times 125 \% - 1
Evaluate
9
Factor
3^{2}
Share
Copied to clipboard
5.75+\frac{1\times 4+1}{4}\times 4.3-0.9\times \frac{125}{100}-1
Multiply 4.6 and 1.25 to get 5.75.
5.75+\frac{4+1}{4}\times 4.3-0.9\times \frac{125}{100}-1
Multiply 1 and 4 to get 4.
5.75+\frac{5}{4}\times 4.3-0.9\times \frac{125}{100}-1
Add 4 and 1 to get 5.
5.75+\frac{5}{4}\times \frac{43}{10}-0.9\times \frac{125}{100}-1
Convert decimal number 4.3 to fraction \frac{43}{10}.
5.75+\frac{5\times 43}{4\times 10}-0.9\times \frac{125}{100}-1
Multiply \frac{5}{4} times \frac{43}{10} by multiplying numerator times numerator and denominator times denominator.
5.75+\frac{215}{40}-0.9\times \frac{125}{100}-1
Do the multiplications in the fraction \frac{5\times 43}{4\times 10}.
5.75+\frac{43}{8}-0.9\times \frac{125}{100}-1
Reduce the fraction \frac{215}{40} to lowest terms by extracting and canceling out 5.
\frac{23}{4}+\frac{43}{8}-0.9\times \frac{125}{100}-1
Convert decimal number 5.75 to fraction \frac{575}{100}. Reduce the fraction \frac{575}{100} to lowest terms by extracting and canceling out 25.
\frac{46}{8}+\frac{43}{8}-0.9\times \frac{125}{100}-1
Least common multiple of 4 and 8 is 8. Convert \frac{23}{4} and \frac{43}{8} to fractions with denominator 8.
\frac{46+43}{8}-0.9\times \frac{125}{100}-1
Since \frac{46}{8} and \frac{43}{8} have the same denominator, add them by adding their numerators.
\frac{89}{8}-0.9\times \frac{125}{100}-1
Add 46 and 43 to get 89.
\frac{89}{8}-0.9\times \frac{5}{4}-1
Reduce the fraction \frac{125}{100} to lowest terms by extracting and canceling out 25.
\frac{89}{8}-\frac{9}{10}\times \frac{5}{4}-1
Convert decimal number 0.9 to fraction \frac{9}{10}.
\frac{89}{8}-\frac{9\times 5}{10\times 4}-1
Multiply \frac{9}{10} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{89}{8}-\frac{45}{40}-1
Do the multiplications in the fraction \frac{9\times 5}{10\times 4}.
\frac{89}{8}-\frac{9}{8}-1
Reduce the fraction \frac{45}{40} to lowest terms by extracting and canceling out 5.
\frac{89-9}{8}-1
Since \frac{89}{8} and \frac{9}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{80}{8}-1
Subtract 9 from 89 to get 80.
10-1
Divide 80 by 8 to get 10.
9
Subtract 1 from 10 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}