Solve for c
c\geq -3.8
Share
Copied to clipboard
-1.5c\leq 10-4.3
Subtract 4.3 from both sides.
-1.5c\leq 5.7
Subtract 4.3 from 10 to get 5.7.
c\geq \frac{5.7}{-1.5}
Divide both sides by -1.5. Since -1.5 is negative, the inequality direction is changed.
c\geq \frac{57}{-15}
Expand \frac{5.7}{-1.5} by multiplying both numerator and the denominator by 10.
c\geq -\frac{19}{5}
Reduce the fraction \frac{57}{-15} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}