Solve for a
a=\frac{19}{3}-x
Solve for x
x=\frac{19}{3}-a
Graph
Share
Copied to clipboard
24-3x-5+2a=5a
Multiply both sides of the equation by 6, the least common multiple of 2,6,3.
19-3x+2a=5a
Subtract 5 from 24 to get 19.
19-3x+2a-5a=0
Subtract 5a from both sides.
19-3x-3a=0
Combine 2a and -5a to get -3a.
-3x-3a=-19
Subtract 19 from both sides. Anything subtracted from zero gives its negation.
-3a=-19+3x
Add 3x to both sides.
-3a=3x-19
The equation is in standard form.
\frac{-3a}{-3}=\frac{3x-19}{-3}
Divide both sides by -3.
a=\frac{3x-19}{-3}
Dividing by -3 undoes the multiplication by -3.
a=\frac{19}{3}-x
Divide -19+3x by -3.
24-3x-5+2a=5a
Multiply both sides of the equation by 6, the least common multiple of 2,6,3.
19-3x+2a=5a
Subtract 5 from 24 to get 19.
-3x+2a=5a-19
Subtract 19 from both sides.
-3x=5a-19-2a
Subtract 2a from both sides.
-3x=3a-19
Combine 5a and -2a to get 3a.
\frac{-3x}{-3}=\frac{3a-19}{-3}
Divide both sides by -3.
x=\frac{3a-19}{-3}
Dividing by -3 undoes the multiplication by -3.
x=\frac{19}{3}-a
Divide 3a-19 by -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}