Evaluate
\frac{4789}{1000}=4.789
Factor
\frac{4789}{2 ^ {3} \cdot 5 ^ {3}} = 4\frac{789}{1000} = 4.789
Share
Copied to clipboard
\begin{array}{l}\phantom{1000)}\phantom{1}\\1000\overline{)4789}\\\end{array}
Use the 1^{st} digit 4 from dividend 4789
\begin{array}{l}\phantom{1000)}0\phantom{2}\\1000\overline{)4789}\\\end{array}
Since 4 is less than 1000, use the next digit 7 from dividend 4789 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}0\phantom{3}\\1000\overline{)4789}\\\end{array}
Use the 2^{nd} digit 7 from dividend 4789
\begin{array}{l}\phantom{1000)}00\phantom{4}\\1000\overline{)4789}\\\end{array}
Since 47 is less than 1000, use the next digit 8 from dividend 4789 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}00\phantom{5}\\1000\overline{)4789}\\\end{array}
Use the 3^{rd} digit 8 from dividend 4789
\begin{array}{l}\phantom{1000)}000\phantom{6}\\1000\overline{)4789}\\\end{array}
Since 478 is less than 1000, use the next digit 9 from dividend 4789 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}000\phantom{7}\\1000\overline{)4789}\\\end{array}
Use the 4^{th} digit 9 from dividend 4789
\begin{array}{l}\phantom{1000)}0004\phantom{8}\\1000\overline{)4789}\\\phantom{1000)}\underline{\phantom{}4000\phantom{}}\\\phantom{1000)9}789\\\end{array}
Find closest multiple of 1000 to 4789. We see that 4 \times 1000 = 4000 is the nearest. Now subtract 4000 from 4789 to get reminder 789. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }789
Since 789 is less than 1000, stop the division. The reminder is 789. The topmost line 0004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}