Solve for x
x=4
Graph
Share
Copied to clipboard
4+2\left(49-14x+x^{2}\right)+7-x+2x\left(7-x\right)-49=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7-x\right)^{2}.
4+98-28x+2x^{2}+7-x+2x\left(7-x\right)-49=0
Use the distributive property to multiply 2 by 49-14x+x^{2}.
102-28x+2x^{2}+7-x+2x\left(7-x\right)-49=0
Add 4 and 98 to get 102.
109-28x+2x^{2}-x+2x\left(7-x\right)-49=0
Add 102 and 7 to get 109.
109-29x+2x^{2}+2x\left(7-x\right)-49=0
Combine -28x and -x to get -29x.
109-29x+2x^{2}+14x-2x^{2}-49=0
Use the distributive property to multiply 2x by 7-x.
109-15x+2x^{2}-2x^{2}-49=0
Combine -29x and 14x to get -15x.
109-15x-49=0
Combine 2x^{2} and -2x^{2} to get 0.
60-15x=0
Subtract 49 from 109 to get 60.
-15x=-60
Subtract 60 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-60}{-15}
Divide both sides by -15.
x=4
Divide -60 by -15 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}