Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}+12x+4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\left(-2\right)\times 4}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{144-4\left(-2\right)\times 4}}{2\left(-2\right)}
Square 12.
x=\frac{-12±\sqrt{144+8\times 4}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-12±\sqrt{144+32}}{2\left(-2\right)}
Multiply 8 times 4.
x=\frac{-12±\sqrt{176}}{2\left(-2\right)}
Add 144 to 32.
x=\frac{-12±4\sqrt{11}}{2\left(-2\right)}
Take the square root of 176.
x=\frac{-12±4\sqrt{11}}{-4}
Multiply 2 times -2.
x=\frac{4\sqrt{11}-12}{-4}
Now solve the equation x=\frac{-12±4\sqrt{11}}{-4} when ± is plus. Add -12 to 4\sqrt{11}.
x=3-\sqrt{11}
Divide -12+4\sqrt{11} by -4.
x=\frac{-4\sqrt{11}-12}{-4}
Now solve the equation x=\frac{-12±4\sqrt{11}}{-4} when ± is minus. Subtract 4\sqrt{11} from -12.
x=\sqrt{11}+3
Divide -12-4\sqrt{11} by -4.
-2x^{2}+12x+4=-2\left(x-\left(3-\sqrt{11}\right)\right)\left(x-\left(\sqrt{11}+3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3-\sqrt{11} for x_{1} and 3+\sqrt{11} for x_{2}.