Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

4z^{2}=44
Add 44 to both sides. Anything plus zero gives itself.
z^{2}=\frac{44}{4}
Divide both sides by 4.
z^{2}=11
Divide 44 by 4 to get 11.
z=\sqrt{11} z=-\sqrt{11}
Take the square root of both sides of the equation.
4z^{2}-44=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
z=\frac{0±\sqrt{0^{2}-4\times 4\left(-44\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 0 for b, and -44 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{0±\sqrt{-4\times 4\left(-44\right)}}{2\times 4}
Square 0.
z=\frac{0±\sqrt{-16\left(-44\right)}}{2\times 4}
Multiply -4 times 4.
z=\frac{0±\sqrt{704}}{2\times 4}
Multiply -16 times -44.
z=\frac{0±8\sqrt{11}}{2\times 4}
Take the square root of 704.
z=\frac{0±8\sqrt{11}}{8}
Multiply 2 times 4.
z=\sqrt{11}
Now solve the equation z=\frac{0±8\sqrt{11}}{8} when ± is plus.
z=-\sqrt{11}
Now solve the equation z=\frac{0±8\sqrt{11}}{8} when ± is minus.
z=\sqrt{11} z=-\sqrt{11}
The equation is now solved.