Factor
\left(2y-3\right)\left(2y-1\right)
Evaluate
\left(2y-3\right)\left(2y-1\right)
Graph
Share
Copied to clipboard
a+b=-8 ab=4\times 3=12
Factor the expression by grouping. First, the expression needs to be rewritten as 4y^{2}+ay+by+3. To find a and b, set up a system to be solved.
-1,-12 -2,-6 -3,-4
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 12.
-1-12=-13 -2-6=-8 -3-4=-7
Calculate the sum for each pair.
a=-6 b=-2
The solution is the pair that gives sum -8.
\left(4y^{2}-6y\right)+\left(-2y+3\right)
Rewrite 4y^{2}-8y+3 as \left(4y^{2}-6y\right)+\left(-2y+3\right).
2y\left(2y-3\right)-\left(2y-3\right)
Factor out 2y in the first and -1 in the second group.
\left(2y-3\right)\left(2y-1\right)
Factor out common term 2y-3 by using distributive property.
4y^{2}-8y+3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 4\times 3}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-8\right)±\sqrt{64-4\times 4\times 3}}{2\times 4}
Square -8.
y=\frac{-\left(-8\right)±\sqrt{64-16\times 3}}{2\times 4}
Multiply -4 times 4.
y=\frac{-\left(-8\right)±\sqrt{64-48}}{2\times 4}
Multiply -16 times 3.
y=\frac{-\left(-8\right)±\sqrt{16}}{2\times 4}
Add 64 to -48.
y=\frac{-\left(-8\right)±4}{2\times 4}
Take the square root of 16.
y=\frac{8±4}{2\times 4}
The opposite of -8 is 8.
y=\frac{8±4}{8}
Multiply 2 times 4.
y=\frac{12}{8}
Now solve the equation y=\frac{8±4}{8} when ± is plus. Add 8 to 4.
y=\frac{3}{2}
Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
y=\frac{4}{8}
Now solve the equation y=\frac{8±4}{8} when ± is minus. Subtract 4 from 8.
y=\frac{1}{2}
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
4y^{2}-8y+3=4\left(y-\frac{3}{2}\right)\left(y-\frac{1}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{2} for x_{1} and \frac{1}{2} for x_{2}.
4y^{2}-8y+3=4\times \frac{2y-3}{2}\left(y-\frac{1}{2}\right)
Subtract \frac{3}{2} from y by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
4y^{2}-8y+3=4\times \frac{2y-3}{2}\times \frac{2y-1}{2}
Subtract \frac{1}{2} from y by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
4y^{2}-8y+3=4\times \frac{\left(2y-3\right)\left(2y-1\right)}{2\times 2}
Multiply \frac{2y-3}{2} times \frac{2y-1}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
4y^{2}-8y+3=4\times \frac{\left(2y-3\right)\left(2y-1\right)}{4}
Multiply 2 times 2.
4y^{2}-8y+3=\left(2y-3\right)\left(2y-1\right)
Cancel out 4, the greatest common factor in 4 and 4.
x ^ 2 -2x +\frac{3}{4} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 4
r + s = 2 rs = \frac{3}{4}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 1 - u s = 1 + u
Two numbers r and s sum up to 2 exactly when the average of the two numbers is \frac{1}{2}*2 = 1. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(1 - u) (1 + u) = \frac{3}{4}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{3}{4}
1 - u^2 = \frac{3}{4}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{3}{4}-1 = -\frac{1}{4}
Simplify the expression by subtracting 1 on both sides
u^2 = \frac{1}{4} u = \pm\sqrt{\frac{1}{4}} = \pm \frac{1}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =1 - \frac{1}{2} = 0.500 s = 1 + \frac{1}{2} = 1.500
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}