Skip to main content
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

4y^{2}-17y+42=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 4\times 42}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -17 for b, and 42 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-17\right)±\sqrt{289-4\times 4\times 42}}{2\times 4}
Square -17.
y=\frac{-\left(-17\right)±\sqrt{289-16\times 42}}{2\times 4}
Multiply -4 times 4.
y=\frac{-\left(-17\right)±\sqrt{289-672}}{2\times 4}
Multiply -16 times 42.
y=\frac{-\left(-17\right)±\sqrt{-383}}{2\times 4}
Add 289 to -672.
y=\frac{-\left(-17\right)±\sqrt{383}i}{2\times 4}
Take the square root of -383.
y=\frac{17±\sqrt{383}i}{2\times 4}
The opposite of -17 is 17.
y=\frac{17±\sqrt{383}i}{8}
Multiply 2 times 4.
y=\frac{17+\sqrt{383}i}{8}
Now solve the equation y=\frac{17±\sqrt{383}i}{8} when ± is plus. Add 17 to i\sqrt{383}.
y=\frac{-\sqrt{383}i+17}{8}
Now solve the equation y=\frac{17±\sqrt{383}i}{8} when ± is minus. Subtract i\sqrt{383} from 17.
y=\frac{17+\sqrt{383}i}{8} y=\frac{-\sqrt{383}i+17}{8}
The equation is now solved.
4y^{2}-17y+42=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4y^{2}-17y+42-42=-42
Subtract 42 from both sides of the equation.
4y^{2}-17y=-42
Subtracting 42 from itself leaves 0.
\frac{4y^{2}-17y}{4}=-\frac{42}{4}
Divide both sides by 4.
y^{2}-\frac{17}{4}y=-\frac{42}{4}
Dividing by 4 undoes the multiplication by 4.
y^{2}-\frac{17}{4}y=-\frac{21}{2}
Reduce the fraction \frac{-42}{4} to lowest terms by extracting and canceling out 2.
y^{2}-\frac{17}{4}y+\left(-\frac{17}{8}\right)^{2}=-\frac{21}{2}+\left(-\frac{17}{8}\right)^{2}
Divide -\frac{17}{4}, the coefficient of the x term, by 2 to get -\frac{17}{8}. Then add the square of -\frac{17}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{17}{4}y+\frac{289}{64}=-\frac{21}{2}+\frac{289}{64}
Square -\frac{17}{8} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{17}{4}y+\frac{289}{64}=-\frac{383}{64}
Add -\frac{21}{2} to \frac{289}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{17}{8}\right)^{2}=-\frac{383}{64}
Factor y^{2}-\frac{17}{4}y+\frac{289}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{17}{8}\right)^{2}}=\sqrt{-\frac{383}{64}}
Take the square root of both sides of the equation.
y-\frac{17}{8}=\frac{\sqrt{383}i}{8} y-\frac{17}{8}=-\frac{\sqrt{383}i}{8}
Simplify.
y=\frac{17+\sqrt{383}i}{8} y=\frac{-\sqrt{383}i+17}{8}
Add \frac{17}{8} to both sides of the equation.
x ^ 2 -\frac{17}{4}x +\frac{21}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 4
r + s = \frac{17}{4} rs = \frac{21}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{17}{8} - u s = \frac{17}{8} + u
Two numbers r and s sum up to \frac{17}{4} exactly when the average of the two numbers is \frac{1}{2}*\frac{17}{4} = \frac{17}{8}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{17}{8} - u) (\frac{17}{8} + u) = \frac{21}{2}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{21}{2}
\frac{289}{64} - u^2 = \frac{21}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{21}{2}-\frac{289}{64} = \frac{383}{64}
Simplify the expression by subtracting \frac{289}{64} on both sides
u^2 = -\frac{383}{64} u = \pm\sqrt{-\frac{383}{64}} = \pm \frac{\sqrt{383}}{8}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{17}{8} - \frac{\sqrt{383}}{8}i = 2.125 - 2.446i s = \frac{17}{8} + \frac{\sqrt{383}}{8}i = 2.125 + 2.446i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.