Solve for y
y=\frac{13+\sqrt{407}i}{8}\approx 1.625+2.521780125i
y=\frac{-\sqrt{407}i+13}{8}\approx 1.625-2.521780125i
Share
Copied to clipboard
4y^{2}-13y+36=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 4\times 36}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -13 for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-13\right)±\sqrt{169-4\times 4\times 36}}{2\times 4}
Square -13.
y=\frac{-\left(-13\right)±\sqrt{169-16\times 36}}{2\times 4}
Multiply -4 times 4.
y=\frac{-\left(-13\right)±\sqrt{169-576}}{2\times 4}
Multiply -16 times 36.
y=\frac{-\left(-13\right)±\sqrt{-407}}{2\times 4}
Add 169 to -576.
y=\frac{-\left(-13\right)±\sqrt{407}i}{2\times 4}
Take the square root of -407.
y=\frac{13±\sqrt{407}i}{2\times 4}
The opposite of -13 is 13.
y=\frac{13±\sqrt{407}i}{8}
Multiply 2 times 4.
y=\frac{13+\sqrt{407}i}{8}
Now solve the equation y=\frac{13±\sqrt{407}i}{8} when ± is plus. Add 13 to i\sqrt{407}.
y=\frac{-\sqrt{407}i+13}{8}
Now solve the equation y=\frac{13±\sqrt{407}i}{8} when ± is minus. Subtract i\sqrt{407} from 13.
y=\frac{13+\sqrt{407}i}{8} y=\frac{-\sqrt{407}i+13}{8}
The equation is now solved.
4y^{2}-13y+36=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4y^{2}-13y+36-36=-36
Subtract 36 from both sides of the equation.
4y^{2}-13y=-36
Subtracting 36 from itself leaves 0.
\frac{4y^{2}-13y}{4}=-\frac{36}{4}
Divide both sides by 4.
y^{2}-\frac{13}{4}y=-\frac{36}{4}
Dividing by 4 undoes the multiplication by 4.
y^{2}-\frac{13}{4}y=-9
Divide -36 by 4.
y^{2}-\frac{13}{4}y+\left(-\frac{13}{8}\right)^{2}=-9+\left(-\frac{13}{8}\right)^{2}
Divide -\frac{13}{4}, the coefficient of the x term, by 2 to get -\frac{13}{8}. Then add the square of -\frac{13}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{13}{4}y+\frac{169}{64}=-9+\frac{169}{64}
Square -\frac{13}{8} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{13}{4}y+\frac{169}{64}=-\frac{407}{64}
Add -9 to \frac{169}{64}.
\left(y-\frac{13}{8}\right)^{2}=-\frac{407}{64}
Factor y^{2}-\frac{13}{4}y+\frac{169}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{13}{8}\right)^{2}}=\sqrt{-\frac{407}{64}}
Take the square root of both sides of the equation.
y-\frac{13}{8}=\frac{\sqrt{407}i}{8} y-\frac{13}{8}=-\frac{\sqrt{407}i}{8}
Simplify.
y=\frac{13+\sqrt{407}i}{8} y=\frac{-\sqrt{407}i+13}{8}
Add \frac{13}{8} to both sides of the equation.
x ^ 2 -\frac{13}{4}x +9 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 4
r + s = \frac{13}{4} rs = 9
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{13}{8} - u s = \frac{13}{8} + u
Two numbers r and s sum up to \frac{13}{4} exactly when the average of the two numbers is \frac{1}{2}*\frac{13}{4} = \frac{13}{8}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{13}{8} - u) (\frac{13}{8} + u) = 9
To solve for unknown quantity u, substitute these in the product equation rs = 9
\frac{169}{64} - u^2 = 9
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 9-\frac{169}{64} = \frac{407}{64}
Simplify the expression by subtracting \frac{169}{64} on both sides
u^2 = -\frac{407}{64} u = \pm\sqrt{-\frac{407}{64}} = \pm \frac{\sqrt{407}}{8}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{13}{8} - \frac{\sqrt{407}}{8}i = 1.625 - 2.522i s = \frac{13}{8} + \frac{\sqrt{407}}{8}i = 1.625 + 2.522i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}