Solve for x
x=7-2\sqrt{17}\approx -1.246211251
Graph
Share
Copied to clipboard
\left(4x-6-4x+4-x+1\right)^{2}=\left(2\sqrt{4x+5}\right)^{2}
Square both sides of the equation.
\left(-6+4-x+1\right)^{2}=\left(2\sqrt{4x+5}\right)^{2}
Combine 4x and -4x to get 0.
\left(-2-x+1\right)^{2}=\left(2\sqrt{4x+5}\right)^{2}
Add -6 and 4 to get -2.
\left(-1-x\right)^{2}=\left(2\sqrt{4x+5}\right)^{2}
Add -2 and 1 to get -1.
1+2x+x^{2}=\left(2\sqrt{4x+5}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-1-x\right)^{2}.
1+2x+x^{2}=2^{2}\left(\sqrt{4x+5}\right)^{2}
Expand \left(2\sqrt{4x+5}\right)^{2}.
1+2x+x^{2}=4\left(\sqrt{4x+5}\right)^{2}
Calculate 2 to the power of 2 and get 4.
1+2x+x^{2}=4\left(4x+5\right)
Calculate \sqrt{4x+5} to the power of 2 and get 4x+5.
1+2x+x^{2}=16x+20
Use the distributive property to multiply 4 by 4x+5.
1+2x+x^{2}-16x=20
Subtract 16x from both sides.
1-14x+x^{2}=20
Combine 2x and -16x to get -14x.
1-14x+x^{2}-20=0
Subtract 20 from both sides.
-19-14x+x^{2}=0
Subtract 20 from 1 to get -19.
x^{2}-14x-19=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\left(-19\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -14 for b, and -19 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\left(-19\right)}}{2}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196+76}}{2}
Multiply -4 times -19.
x=\frac{-\left(-14\right)±\sqrt{272}}{2}
Add 196 to 76.
x=\frac{-\left(-14\right)±4\sqrt{17}}{2}
Take the square root of 272.
x=\frac{14±4\sqrt{17}}{2}
The opposite of -14 is 14.
x=\frac{4\sqrt{17}+14}{2}
Now solve the equation x=\frac{14±4\sqrt{17}}{2} when ± is plus. Add 14 to 4\sqrt{17}.
x=2\sqrt{17}+7
Divide 14+4\sqrt{17} by 2.
x=\frac{14-4\sqrt{17}}{2}
Now solve the equation x=\frac{14±4\sqrt{17}}{2} when ± is minus. Subtract 4\sqrt{17} from 14.
x=7-2\sqrt{17}
Divide 14-4\sqrt{17} by 2.
x=2\sqrt{17}+7 x=7-2\sqrt{17}
The equation is now solved.
4\left(2\sqrt{17}+7\right)-6-4\left(2\sqrt{17}+7\right)+4-\left(2\sqrt{17}+7\right)+1=2\sqrt{4\left(2\sqrt{17}+7\right)+5}
Substitute 2\sqrt{17}+7 for x in the equation 4x-6-4x+4-x+1=2\sqrt{4x+5}.
-2\times 17^{\frac{1}{2}}-8=2\times 17^{\frac{1}{2}}+8
Simplify. The value x=2\sqrt{17}+7 does not satisfy the equation because the left and the right hand side have opposite signs.
4\left(7-2\sqrt{17}\right)-6-4\left(7-2\sqrt{17}\right)+4-\left(7-2\sqrt{17}\right)+1=2\sqrt{4\left(7-2\sqrt{17}\right)+5}
Substitute 7-2\sqrt{17} for x in the equation 4x-6-4x+4-x+1=2\sqrt{4x+5}.
-8+2\times 17^{\frac{1}{2}}=2\times 17^{\frac{1}{2}}-8
Simplify. The value x=7-2\sqrt{17} satisfies the equation.
x=7-2\sqrt{17}
Equation -x-1=2\sqrt{4x+5} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}