Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x-4=26x\left(2x-2\right)
Combine 4x and x to get 5x.
5x-4=52x^{2}-52x
Use the distributive property to multiply 26x by 2x-2.
5x-4-52x^{2}=-52x
Subtract 52x^{2} from both sides.
5x-4-52x^{2}+52x=0
Add 52x to both sides.
57x-4-52x^{2}=0
Combine 5x and 52x to get 57x.
-52x^{2}+57x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-57±\sqrt{57^{2}-4\left(-52\right)\left(-4\right)}}{2\left(-52\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -52 for a, 57 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-57±\sqrt{3249-4\left(-52\right)\left(-4\right)}}{2\left(-52\right)}
Square 57.
x=\frac{-57±\sqrt{3249+208\left(-4\right)}}{2\left(-52\right)}
Multiply -4 times -52.
x=\frac{-57±\sqrt{3249-832}}{2\left(-52\right)}
Multiply 208 times -4.
x=\frac{-57±\sqrt{2417}}{2\left(-52\right)}
Add 3249 to -832.
x=\frac{-57±\sqrt{2417}}{-104}
Multiply 2 times -52.
x=\frac{\sqrt{2417}-57}{-104}
Now solve the equation x=\frac{-57±\sqrt{2417}}{-104} when ± is plus. Add -57 to \sqrt{2417}.
x=\frac{57-\sqrt{2417}}{104}
Divide -57+\sqrt{2417} by -104.
x=\frac{-\sqrt{2417}-57}{-104}
Now solve the equation x=\frac{-57±\sqrt{2417}}{-104} when ± is minus. Subtract \sqrt{2417} from -57.
x=\frac{\sqrt{2417}+57}{104}
Divide -57-\sqrt{2417} by -104.
x=\frac{57-\sqrt{2417}}{104} x=\frac{\sqrt{2417}+57}{104}
The equation is now solved.
5x-4=26x\left(2x-2\right)
Combine 4x and x to get 5x.
5x-4=52x^{2}-52x
Use the distributive property to multiply 26x by 2x-2.
5x-4-52x^{2}=-52x
Subtract 52x^{2} from both sides.
5x-4-52x^{2}+52x=0
Add 52x to both sides.
57x-4-52x^{2}=0
Combine 5x and 52x to get 57x.
57x-52x^{2}=4
Add 4 to both sides. Anything plus zero gives itself.
-52x^{2}+57x=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-52x^{2}+57x}{-52}=\frac{4}{-52}
Divide both sides by -52.
x^{2}+\frac{57}{-52}x=\frac{4}{-52}
Dividing by -52 undoes the multiplication by -52.
x^{2}-\frac{57}{52}x=\frac{4}{-52}
Divide 57 by -52.
x^{2}-\frac{57}{52}x=-\frac{1}{13}
Reduce the fraction \frac{4}{-52} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{57}{52}x+\left(-\frac{57}{104}\right)^{2}=-\frac{1}{13}+\left(-\frac{57}{104}\right)^{2}
Divide -\frac{57}{52}, the coefficient of the x term, by 2 to get -\frac{57}{104}. Then add the square of -\frac{57}{104} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{57}{52}x+\frac{3249}{10816}=-\frac{1}{13}+\frac{3249}{10816}
Square -\frac{57}{104} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{57}{52}x+\frac{3249}{10816}=\frac{2417}{10816}
Add -\frac{1}{13} to \frac{3249}{10816} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{57}{104}\right)^{2}=\frac{2417}{10816}
Factor x^{2}-\frac{57}{52}x+\frac{3249}{10816}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{57}{104}\right)^{2}}=\sqrt{\frac{2417}{10816}}
Take the square root of both sides of the equation.
x-\frac{57}{104}=\frac{\sqrt{2417}}{104} x-\frac{57}{104}=-\frac{\sqrt{2417}}{104}
Simplify.
x=\frac{\sqrt{2417}+57}{104} x=\frac{57-\sqrt{2417}}{104}
Add \frac{57}{104} to both sides of the equation.