Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}+4x+5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\left(-3\right)\times 5}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{16-4\left(-3\right)\times 5}}{2\left(-3\right)}
Square 4.
x=\frac{-4±\sqrt{16+12\times 5}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-4±\sqrt{16+60}}{2\left(-3\right)}
Multiply 12 times 5.
x=\frac{-4±\sqrt{76}}{2\left(-3\right)}
Add 16 to 60.
x=\frac{-4±2\sqrt{19}}{2\left(-3\right)}
Take the square root of 76.
x=\frac{-4±2\sqrt{19}}{-6}
Multiply 2 times -3.
x=\frac{2\sqrt{19}-4}{-6}
Now solve the equation x=\frac{-4±2\sqrt{19}}{-6} when ± is plus. Add -4 to 2\sqrt{19}.
x=\frac{2-\sqrt{19}}{3}
Divide -4+2\sqrt{19} by -6.
x=\frac{-2\sqrt{19}-4}{-6}
Now solve the equation x=\frac{-4±2\sqrt{19}}{-6} when ± is minus. Subtract 2\sqrt{19} from -4.
x=\frac{\sqrt{19}+2}{3}
Divide -4-2\sqrt{19} by -6.
-3x^{2}+4x+5=-3\left(x-\frac{2-\sqrt{19}}{3}\right)\left(x-\frac{\sqrt{19}+2}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2-\sqrt{19}}{3} for x_{1} and \frac{2+\sqrt{19}}{3} for x_{2}.