Solve for x
x = \frac{314}{41} = 7\frac{27}{41} \approx 7.658536585
Graph
Quiz
Linear Equation
5 problems similar to:
4 x - 3 ( \frac { - 7 } { 5 } x + \frac { 53 } { 5 } ) = 31
Share
Copied to clipboard
4x-3\left(-\frac{7}{5}x+\frac{53}{5}\right)=31
Fraction \frac{-7}{5} can be rewritten as -\frac{7}{5} by extracting the negative sign.
4x-3\left(-\frac{7}{5}\right)x-3\times \frac{53}{5}=31
Use the distributive property to multiply -3 by -\frac{7}{5}x+\frac{53}{5}.
4x+\frac{-3\left(-7\right)}{5}x-3\times \frac{53}{5}=31
Express -3\left(-\frac{7}{5}\right) as a single fraction.
4x+\frac{21}{5}x-3\times \frac{53}{5}=31
Multiply -3 and -7 to get 21.
4x+\frac{21}{5}x+\frac{-3\times 53}{5}=31
Express -3\times \frac{53}{5} as a single fraction.
4x+\frac{21}{5}x+\frac{-159}{5}=31
Multiply -3 and 53 to get -159.
4x+\frac{21}{5}x-\frac{159}{5}=31
Fraction \frac{-159}{5} can be rewritten as -\frac{159}{5} by extracting the negative sign.
\frac{41}{5}x-\frac{159}{5}=31
Combine 4x and \frac{21}{5}x to get \frac{41}{5}x.
\frac{41}{5}x=31+\frac{159}{5}
Add \frac{159}{5} to both sides.
\frac{41}{5}x=\frac{155}{5}+\frac{159}{5}
Convert 31 to fraction \frac{155}{5}.
\frac{41}{5}x=\frac{155+159}{5}
Since \frac{155}{5} and \frac{159}{5} have the same denominator, add them by adding their numerators.
\frac{41}{5}x=\frac{314}{5}
Add 155 and 159 to get 314.
x=\frac{314}{5}\times \frac{5}{41}
Multiply both sides by \frac{5}{41}, the reciprocal of \frac{41}{5}.
x=\frac{314\times 5}{5\times 41}
Multiply \frac{314}{5} times \frac{5}{41} by multiplying numerator times numerator and denominator times denominator.
x=\frac{314}{41}
Cancel out 5 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}