Solve for x
x=\frac{\sqrt{34}}{2}+4\approx 6.915475947
x=-\frac{\sqrt{34}}{2}+4\approx 1.084524053
Graph
Share
Copied to clipboard
-\frac{1}{2}x^{2}+4x=\frac{15}{4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-\frac{1}{2}x^{2}+4x-\frac{15}{4}=\frac{15}{4}-\frac{15}{4}
Subtract \frac{15}{4} from both sides of the equation.
-\frac{1}{2}x^{2}+4x-\frac{15}{4}=0
Subtracting \frac{15}{4} from itself leaves 0.
x=\frac{-4±\sqrt{4^{2}-4\left(-\frac{1}{2}\right)\left(-\frac{15}{4}\right)}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, 4 for b, and -\frac{15}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-\frac{1}{2}\right)\left(-\frac{15}{4}\right)}}{2\left(-\frac{1}{2}\right)}
Square 4.
x=\frac{-4±\sqrt{16+2\left(-\frac{15}{4}\right)}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{-4±\sqrt{16-\frac{15}{2}}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times -\frac{15}{4}.
x=\frac{-4±\sqrt{\frac{17}{2}}}{2\left(-\frac{1}{2}\right)}
Add 16 to -\frac{15}{2}.
x=\frac{-4±\frac{\sqrt{34}}{2}}{2\left(-\frac{1}{2}\right)}
Take the square root of \frac{17}{2}.
x=\frac{-4±\frac{\sqrt{34}}{2}}{-1}
Multiply 2 times -\frac{1}{2}.
x=\frac{\frac{\sqrt{34}}{2}-4}{-1}
Now solve the equation x=\frac{-4±\frac{\sqrt{34}}{2}}{-1} when ± is plus. Add -4 to \frac{\sqrt{34}}{2}.
x=-\frac{\sqrt{34}}{2}+4
Divide -4+\frac{\sqrt{34}}{2} by -1.
x=\frac{-\frac{\sqrt{34}}{2}-4}{-1}
Now solve the equation x=\frac{-4±\frac{\sqrt{34}}{2}}{-1} when ± is minus. Subtract \frac{\sqrt{34}}{2} from -4.
x=\frac{\sqrt{34}}{2}+4
Divide -4-\frac{\sqrt{34}}{2} by -1.
x=-\frac{\sqrt{34}}{2}+4 x=\frac{\sqrt{34}}{2}+4
The equation is now solved.
-\frac{1}{2}x^{2}+4x=\frac{15}{4}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{2}x^{2}+4x}{-\frac{1}{2}}=\frac{\frac{15}{4}}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\frac{4}{-\frac{1}{2}}x=\frac{\frac{15}{4}}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}-8x=\frac{\frac{15}{4}}{-\frac{1}{2}}
Divide 4 by -\frac{1}{2} by multiplying 4 by the reciprocal of -\frac{1}{2}.
x^{2}-8x=-\frac{15}{2}
Divide \frac{15}{4} by -\frac{1}{2} by multiplying \frac{15}{4} by the reciprocal of -\frac{1}{2}.
x^{2}-8x+\left(-4\right)^{2}=-\frac{15}{2}+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-\frac{15}{2}+16
Square -4.
x^{2}-8x+16=\frac{17}{2}
Add -\frac{15}{2} to 16.
\left(x-4\right)^{2}=\frac{17}{2}
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{\frac{17}{2}}
Take the square root of both sides of the equation.
x-4=\frac{\sqrt{34}}{2} x-4=-\frac{\sqrt{34}}{2}
Simplify.
x=\frac{\sqrt{34}}{2}+4 x=-\frac{\sqrt{34}}{2}+4
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}