Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+24x=-40
Use the distributive property to multiply 4x by x+6.
4x^{2}+24x+40=0
Add 40 to both sides.
x=\frac{-24±\sqrt{24^{2}-4\times 4\times 40}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 24 for b, and 40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24±\sqrt{576-4\times 4\times 40}}{2\times 4}
Square 24.
x=\frac{-24±\sqrt{576-16\times 40}}{2\times 4}
Multiply -4 times 4.
x=\frac{-24±\sqrt{576-640}}{2\times 4}
Multiply -16 times 40.
x=\frac{-24±\sqrt{-64}}{2\times 4}
Add 576 to -640.
x=\frac{-24±8i}{2\times 4}
Take the square root of -64.
x=\frac{-24±8i}{8}
Multiply 2 times 4.
x=\frac{-24+8i}{8}
Now solve the equation x=\frac{-24±8i}{8} when ± is plus. Add -24 to 8i.
x=-3+i
Divide -24+8i by 8.
x=\frac{-24-8i}{8}
Now solve the equation x=\frac{-24±8i}{8} when ± is minus. Subtract 8i from -24.
x=-3-i
Divide -24-8i by 8.
x=-3+i x=-3-i
The equation is now solved.
4x^{2}+24x=-40
Use the distributive property to multiply 4x by x+6.
\frac{4x^{2}+24x}{4}=-\frac{40}{4}
Divide both sides by 4.
x^{2}+\frac{24}{4}x=-\frac{40}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+6x=-\frac{40}{4}
Divide 24 by 4.
x^{2}+6x=-10
Divide -40 by 4.
x^{2}+6x+3^{2}=-10+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=-10+9
Square 3.
x^{2}+6x+9=-1
Add -10 to 9.
\left(x+3\right)^{2}=-1
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{-1}
Take the square root of both sides of the equation.
x+3=i x+3=-i
Simplify.
x=-3+i x=-3-i
Subtract 3 from both sides of the equation.