Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+4x-\left(x+2\right)\left(x-3\right)=7
Use the distributive property to multiply 4x by x+1.
4x^{2}+4x-\left(x^{2}-x-6\right)=7
Use the distributive property to multiply x+2 by x-3 and combine like terms.
4x^{2}+4x-x^{2}+x+6=7
To find the opposite of x^{2}-x-6, find the opposite of each term.
3x^{2}+4x+x+6=7
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+5x+6=7
Combine 4x and x to get 5x.
3x^{2}+5x+6-7=0
Subtract 7 from both sides.
3x^{2}+5x-1=0
Subtract 7 from 6 to get -1.
x=\frac{-5±\sqrt{5^{2}-4\times 3\left(-1\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 5 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 3\left(-1\right)}}{2\times 3}
Square 5.
x=\frac{-5±\sqrt{25-12\left(-1\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-5±\sqrt{25+12}}{2\times 3}
Multiply -12 times -1.
x=\frac{-5±\sqrt{37}}{2\times 3}
Add 25 to 12.
x=\frac{-5±\sqrt{37}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{37}-5}{6}
Now solve the equation x=\frac{-5±\sqrt{37}}{6} when ± is plus. Add -5 to \sqrt{37}.
x=\frac{-\sqrt{37}-5}{6}
Now solve the equation x=\frac{-5±\sqrt{37}}{6} when ± is minus. Subtract \sqrt{37} from -5.
x=\frac{\sqrt{37}-5}{6} x=\frac{-\sqrt{37}-5}{6}
The equation is now solved.
4x^{2}+4x-\left(x+2\right)\left(x-3\right)=7
Use the distributive property to multiply 4x by x+1.
4x^{2}+4x-\left(x^{2}-x-6\right)=7
Use the distributive property to multiply x+2 by x-3 and combine like terms.
4x^{2}+4x-x^{2}+x+6=7
To find the opposite of x^{2}-x-6, find the opposite of each term.
3x^{2}+4x+x+6=7
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+5x+6=7
Combine 4x and x to get 5x.
3x^{2}+5x=7-6
Subtract 6 from both sides.
3x^{2}+5x=1
Subtract 6 from 7 to get 1.
\frac{3x^{2}+5x}{3}=\frac{1}{3}
Divide both sides by 3.
x^{2}+\frac{5}{3}x=\frac{1}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{5}{3}x+\left(\frac{5}{6}\right)^{2}=\frac{1}{3}+\left(\frac{5}{6}\right)^{2}
Divide \frac{5}{3}, the coefficient of the x term, by 2 to get \frac{5}{6}. Then add the square of \frac{5}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{1}{3}+\frac{25}{36}
Square \frac{5}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{37}{36}
Add \frac{1}{3} to \frac{25}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{6}\right)^{2}=\frac{37}{36}
Factor x^{2}+\frac{5}{3}x+\frac{25}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{6}\right)^{2}}=\sqrt{\frac{37}{36}}
Take the square root of both sides of the equation.
x+\frac{5}{6}=\frac{\sqrt{37}}{6} x+\frac{5}{6}=-\frac{\sqrt{37}}{6}
Simplify.
x=\frac{\sqrt{37}-5}{6} x=\frac{-\sqrt{37}-5}{6}
Subtract \frac{5}{6} from both sides of the equation.