Solve for x (complex solution)
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&y=\frac{25}{7}\end{matrix}\right.
Solve for y (complex solution)
\left\{\begin{matrix}\\y=\frac{25}{7}\text{, }&\text{unconditionally}\\y\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&y=\frac{25}{7}\end{matrix}\right.
Solve for y
\left\{\begin{matrix}\\y=\frac{25}{7}\text{, }&\text{unconditionally}\\y\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
16x-4xy=3x\left(y-3\right)
Use the distributive property to multiply 4x by 4-y.
16x-4xy=3xy-9x
Use the distributive property to multiply 3x by y-3.
16x-4xy-3xy=-9x
Subtract 3xy from both sides.
16x-7xy=-9x
Combine -4xy and -3xy to get -7xy.
16x-7xy+9x=0
Add 9x to both sides.
25x-7xy=0
Combine 16x and 9x to get 25x.
\left(25-7y\right)x=0
Combine all terms containing x.
x=0
Divide 0 by 25-7y.
16x-4xy=3x\left(y-3\right)
Use the distributive property to multiply 4x by 4-y.
16x-4xy=3xy-9x
Use the distributive property to multiply 3x by y-3.
16x-4xy-3xy=-9x
Subtract 3xy from both sides.
16x-7xy=-9x
Combine -4xy and -3xy to get -7xy.
-7xy=-9x-16x
Subtract 16x from both sides.
-7xy=-25x
Combine -9x and -16x to get -25x.
\left(-7x\right)y=-25x
The equation is in standard form.
\frac{\left(-7x\right)y}{-7x}=-\frac{25x}{-7x}
Divide both sides by -7x.
y=-\frac{25x}{-7x}
Dividing by -7x undoes the multiplication by -7x.
y=\frac{25}{7}
Divide -25x by -7x.
16x-4xy=3x\left(y-3\right)
Use the distributive property to multiply 4x by 4-y.
16x-4xy=3xy-9x
Use the distributive property to multiply 3x by y-3.
16x-4xy-3xy=-9x
Subtract 3xy from both sides.
16x-7xy=-9x
Combine -4xy and -3xy to get -7xy.
16x-7xy+9x=0
Add 9x to both sides.
25x-7xy=0
Combine 16x and 9x to get 25x.
\left(25-7y\right)x=0
Combine all terms containing x.
x=0
Divide 0 by 25-7y.
16x-4xy=3x\left(y-3\right)
Use the distributive property to multiply 4x by 4-y.
16x-4xy=3xy-9x
Use the distributive property to multiply 3x by y-3.
16x-4xy-3xy=-9x
Subtract 3xy from both sides.
16x-7xy=-9x
Combine -4xy and -3xy to get -7xy.
-7xy=-9x-16x
Subtract 16x from both sides.
-7xy=-25x
Combine -9x and -16x to get -25x.
\left(-7x\right)y=-25x
The equation is in standard form.
\frac{\left(-7x\right)y}{-7x}=-\frac{25x}{-7x}
Divide both sides by -7x.
y=-\frac{25x}{-7x}
Dividing by -7x undoes the multiplication by -7x.
y=\frac{25}{7}
Divide -25x by -7x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}