Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

16x^{2}-84x=80
Use the distributive property to multiply 4x by 4x-21.
16x^{2}-84x-80=0
Subtract 80 from both sides.
x=\frac{-\left(-84\right)±\sqrt{\left(-84\right)^{2}-4\times 16\left(-80\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -84 for b, and -80 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-84\right)±\sqrt{7056-4\times 16\left(-80\right)}}{2\times 16}
Square -84.
x=\frac{-\left(-84\right)±\sqrt{7056-64\left(-80\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-84\right)±\sqrt{7056+5120}}{2\times 16}
Multiply -64 times -80.
x=\frac{-\left(-84\right)±\sqrt{12176}}{2\times 16}
Add 7056 to 5120.
x=\frac{-\left(-84\right)±4\sqrt{761}}{2\times 16}
Take the square root of 12176.
x=\frac{84±4\sqrt{761}}{2\times 16}
The opposite of -84 is 84.
x=\frac{84±4\sqrt{761}}{32}
Multiply 2 times 16.
x=\frac{4\sqrt{761}+84}{32}
Now solve the equation x=\frac{84±4\sqrt{761}}{32} when ± is plus. Add 84 to 4\sqrt{761}.
x=\frac{\sqrt{761}+21}{8}
Divide 84+4\sqrt{761} by 32.
x=\frac{84-4\sqrt{761}}{32}
Now solve the equation x=\frac{84±4\sqrt{761}}{32} when ± is minus. Subtract 4\sqrt{761} from 84.
x=\frac{21-\sqrt{761}}{8}
Divide 84-4\sqrt{761} by 32.
x=\frac{\sqrt{761}+21}{8} x=\frac{21-\sqrt{761}}{8}
The equation is now solved.
16x^{2}-84x=80
Use the distributive property to multiply 4x by 4x-21.
\frac{16x^{2}-84x}{16}=\frac{80}{16}
Divide both sides by 16.
x^{2}+\left(-\frac{84}{16}\right)x=\frac{80}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}-\frac{21}{4}x=\frac{80}{16}
Reduce the fraction \frac{-84}{16} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{21}{4}x=5
Divide 80 by 16.
x^{2}-\frac{21}{4}x+\left(-\frac{21}{8}\right)^{2}=5+\left(-\frac{21}{8}\right)^{2}
Divide -\frac{21}{4}, the coefficient of the x term, by 2 to get -\frac{21}{8}. Then add the square of -\frac{21}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{21}{4}x+\frac{441}{64}=5+\frac{441}{64}
Square -\frac{21}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{21}{4}x+\frac{441}{64}=\frac{761}{64}
Add 5 to \frac{441}{64}.
\left(x-\frac{21}{8}\right)^{2}=\frac{761}{64}
Factor x^{2}-\frac{21}{4}x+\frac{441}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{21}{8}\right)^{2}}=\sqrt{\frac{761}{64}}
Take the square root of both sides of the equation.
x-\frac{21}{8}=\frac{\sqrt{761}}{8} x-\frac{21}{8}=-\frac{\sqrt{761}}{8}
Simplify.
x=\frac{\sqrt{761}+21}{8} x=\frac{21-\sqrt{761}}{8}
Add \frac{21}{8} to both sides of the equation.