Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

±\frac{375}{4},±\frac{375}{2},±375,±\frac{125}{4},±\frac{125}{2},±125,±\frac{75}{4},±\frac{75}{2},±75,±\frac{25}{4},±\frac{25}{2},±25,±\frac{15}{4},±\frac{15}{2},±15,±\frac{5}{4},±\frac{5}{2},±5,±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{4},±\frac{1}{2},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -375 and q divides the leading coefficient 4. List all candidates \frac{p}{q}.
x=\frac{5}{2}
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
2x^{2}-30x+75=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 4x^{3}-70x^{2}+300x-375 by 2\left(x-\frac{5}{2}\right)=2x-5 to get 2x^{2}-30x+75. Solve the equation where the result equals to 0.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 2\times 75}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, -30 for b, and 75 for c in the quadratic formula.
x=\frac{30±10\sqrt{3}}{4}
Do the calculations.
x=\frac{15-5\sqrt{3}}{2} x=\frac{5\sqrt{3}+15}{2}
Solve the equation 2x^{2}-30x+75=0 when ± is plus and when ± is minus.
x=\frac{5}{2} x=\frac{15-5\sqrt{3}}{2} x=\frac{5\sqrt{3}+15}{2}
List all found solutions.