Solve for x (complex solution)
x=\frac{\sqrt{3}i\sqrt[3]{233+3\sqrt{2802}i}}{12}-\frac{43\sqrt{3}i\left(233+3\sqrt{2802}i\right)^{-\frac{1}{3}}}{12}-\frac{\sqrt[3]{233+3\sqrt{2802}i}}{12}-\frac{43\left(233+3\sqrt{2802}i\right)^{-\frac{1}{3}}}{12}+\frac{4}{3}\approx -0.112900108-1.942890293 \cdot 10^{-16}i
x=\frac{\sqrt[3]{233+3\sqrt{2802}i}}{6}+\frac{43\left(233+3\sqrt{2802}i\right)^{-\frac{1}{3}}}{6}+\frac{4}{3}\approx 3.475830186-5.551115123 \cdot 10^{-17}i
x=-\frac{\sqrt{3}i\sqrt[3]{233+3\sqrt{2802}i}}{12}+\frac{43\sqrt{3}i\left(233+3\sqrt{2802}i\right)^{-\frac{1}{3}}}{12}-\frac{\sqrt[3]{233+3\sqrt{2802}i}}{12}-\frac{43\left(233+3\sqrt{2802}i\right)^{-\frac{1}{3}}}{12}+\frac{4}{3}\approx 0.637069922+2.498001805 \cdot 10^{-16}i
Solve for x
x=\frac{-\sqrt{43}\cos(\frac{\arccos(\frac{233\sqrt{43}}{1849})}{3})-\sqrt{129}\sin(\frac{\arccos(\frac{233\sqrt{43}}{1849})}{3})+8}{6}\approx -0.112900108
x=\frac{\sqrt{43}\cos(\frac{\arccos(\frac{233\sqrt{43}}{1849})}{3})+4}{3}\approx 3.475830186
x=\frac{\sqrt{129}\sin(\frac{\arccos(\frac{233\sqrt{43}}{1849})}{3})-\sqrt{43}\cos(\frac{\arccos(\frac{233\sqrt{43}}{1849})}{3})+8}{6}\approx 0.637069922
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}