Factor
2x\left(x-10\right)\left(2x-45\right)
Evaluate
2x\left(x-10\right)\left(2x-45\right)
Graph
Share
Copied to clipboard
2\left(2x^{3}-65x^{2}+450x\right)
Factor out 2.
x\left(2x^{2}-65x+450\right)
Consider 2x^{3}-65x^{2}+450x. Factor out x.
a+b=-65 ab=2\times 450=900
Consider 2x^{2}-65x+450. Factor the expression by grouping. First, the expression needs to be rewritten as 2x^{2}+ax+bx+450. To find a and b, set up a system to be solved.
-1,-900 -2,-450 -3,-300 -4,-225 -5,-180 -6,-150 -9,-100 -10,-90 -12,-75 -15,-60 -18,-50 -20,-45 -25,-36 -30,-30
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 900.
-1-900=-901 -2-450=-452 -3-300=-303 -4-225=-229 -5-180=-185 -6-150=-156 -9-100=-109 -10-90=-100 -12-75=-87 -15-60=-75 -18-50=-68 -20-45=-65 -25-36=-61 -30-30=-60
Calculate the sum for each pair.
a=-45 b=-20
The solution is the pair that gives sum -65.
\left(2x^{2}-45x\right)+\left(-20x+450\right)
Rewrite 2x^{2}-65x+450 as \left(2x^{2}-45x\right)+\left(-20x+450\right).
x\left(2x-45\right)-10\left(2x-45\right)
Factor out x in the first and -10 in the second group.
\left(2x-45\right)\left(x-10\right)
Factor out common term 2x-45 by using distributive property.
2x\left(2x-45\right)\left(x-10\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}