Solve for x
x=3\sqrt{3}+3\approx 8.196152423
x=3-3\sqrt{3}\approx -2.196152423
Graph
Share
Copied to clipboard
4x^{2}-72-24x=0
Subtract 24x from both sides.
4x^{2}-24x-72=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 4\left(-72\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -24 for b, and -72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 4\left(-72\right)}}{2\times 4}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-16\left(-72\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-24\right)±\sqrt{576+1152}}{2\times 4}
Multiply -16 times -72.
x=\frac{-\left(-24\right)±\sqrt{1728}}{2\times 4}
Add 576 to 1152.
x=\frac{-\left(-24\right)±24\sqrt{3}}{2\times 4}
Take the square root of 1728.
x=\frac{24±24\sqrt{3}}{2\times 4}
The opposite of -24 is 24.
x=\frac{24±24\sqrt{3}}{8}
Multiply 2 times 4.
x=\frac{24\sqrt{3}+24}{8}
Now solve the equation x=\frac{24±24\sqrt{3}}{8} when ± is plus. Add 24 to 24\sqrt{3}.
x=3\sqrt{3}+3
Divide 24+24\sqrt{3} by 8.
x=\frac{24-24\sqrt{3}}{8}
Now solve the equation x=\frac{24±24\sqrt{3}}{8} when ± is minus. Subtract 24\sqrt{3} from 24.
x=3-3\sqrt{3}
Divide 24-24\sqrt{3} by 8.
x=3\sqrt{3}+3 x=3-3\sqrt{3}
The equation is now solved.
4x^{2}-72-24x=0
Subtract 24x from both sides.
4x^{2}-24x=72
Add 72 to both sides. Anything plus zero gives itself.
\frac{4x^{2}-24x}{4}=\frac{72}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{24}{4}\right)x=\frac{72}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-6x=\frac{72}{4}
Divide -24 by 4.
x^{2}-6x=18
Divide 72 by 4.
x^{2}-6x+\left(-3\right)^{2}=18+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=18+9
Square -3.
x^{2}-6x+9=27
Add 18 to 9.
\left(x-3\right)^{2}=27
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{27}
Take the square root of both sides of the equation.
x-3=3\sqrt{3} x-3=-3\sqrt{3}
Simplify.
x=3\sqrt{3}+3 x=3-3\sqrt{3}
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}