Factor
\left(2x-29\right)\left(2x-5\right)
Evaluate
\left(2x-29\right)\left(2x-5\right)
Graph
Share
Copied to clipboard
a+b=-68 ab=4\times 145=580
Factor the expression by grouping. First, the expression needs to be rewritten as 4x^{2}+ax+bx+145. To find a and b, set up a system to be solved.
-1,-580 -2,-290 -4,-145 -5,-116 -10,-58 -20,-29
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 580.
-1-580=-581 -2-290=-292 -4-145=-149 -5-116=-121 -10-58=-68 -20-29=-49
Calculate the sum for each pair.
a=-58 b=-10
The solution is the pair that gives sum -68.
\left(4x^{2}-58x\right)+\left(-10x+145\right)
Rewrite 4x^{2}-68x+145 as \left(4x^{2}-58x\right)+\left(-10x+145\right).
2x\left(2x-29\right)-5\left(2x-29\right)
Factor out 2x in the first and -5 in the second group.
\left(2x-29\right)\left(2x-5\right)
Factor out common term 2x-29 by using distributive property.
4x^{2}-68x+145=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-68\right)±\sqrt{\left(-68\right)^{2}-4\times 4\times 145}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-68\right)±\sqrt{4624-4\times 4\times 145}}{2\times 4}
Square -68.
x=\frac{-\left(-68\right)±\sqrt{4624-16\times 145}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-68\right)±\sqrt{4624-2320}}{2\times 4}
Multiply -16 times 145.
x=\frac{-\left(-68\right)±\sqrt{2304}}{2\times 4}
Add 4624 to -2320.
x=\frac{-\left(-68\right)±48}{2\times 4}
Take the square root of 2304.
x=\frac{68±48}{2\times 4}
The opposite of -68 is 68.
x=\frac{68±48}{8}
Multiply 2 times 4.
x=\frac{116}{8}
Now solve the equation x=\frac{68±48}{8} when ± is plus. Add 68 to 48.
x=\frac{29}{2}
Reduce the fraction \frac{116}{8} to lowest terms by extracting and canceling out 4.
x=\frac{20}{8}
Now solve the equation x=\frac{68±48}{8} when ± is minus. Subtract 48 from 68.
x=\frac{5}{2}
Reduce the fraction \frac{20}{8} to lowest terms by extracting and canceling out 4.
4x^{2}-68x+145=4\left(x-\frac{29}{2}\right)\left(x-\frac{5}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{29}{2} for x_{1} and \frac{5}{2} for x_{2}.
4x^{2}-68x+145=4\times \frac{2x-29}{2}\left(x-\frac{5}{2}\right)
Subtract \frac{29}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
4x^{2}-68x+145=4\times \frac{2x-29}{2}\times \frac{2x-5}{2}
Subtract \frac{5}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
4x^{2}-68x+145=4\times \frac{\left(2x-29\right)\left(2x-5\right)}{2\times 2}
Multiply \frac{2x-29}{2} times \frac{2x-5}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
4x^{2}-68x+145=4\times \frac{\left(2x-29\right)\left(2x-5\right)}{4}
Multiply 2 times 2.
4x^{2}-68x+145=\left(2x-29\right)\left(2x-5\right)
Cancel out 4, the greatest common factor in 4 and 4.
x ^ 2 -17x +\frac{145}{4} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 4
r + s = 17 rs = \frac{145}{4}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{17}{2} - u s = \frac{17}{2} + u
Two numbers r and s sum up to 17 exactly when the average of the two numbers is \frac{1}{2}*17 = \frac{17}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{17}{2} - u) (\frac{17}{2} + u) = \frac{145}{4}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{145}{4}
\frac{289}{4} - u^2 = \frac{145}{4}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{145}{4}-\frac{289}{4} = -36
Simplify the expression by subtracting \frac{289}{4} on both sides
u^2 = 36 u = \pm\sqrt{36} = \pm 6
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{17}{2} - 6 = 2.500 s = \frac{17}{2} + 6 = 14.500
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}