Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-3x-2=0
Divide both sides by 2.
a+b=-3 ab=2\left(-2\right)=-4
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx-2. To find a and b, set up a system to be solved.
1,-4 2,-2
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -4.
1-4=-3 2-2=0
Calculate the sum for each pair.
a=-4 b=1
The solution is the pair that gives sum -3.
\left(2x^{2}-4x\right)+\left(x-2\right)
Rewrite 2x^{2}-3x-2 as \left(2x^{2}-4x\right)+\left(x-2\right).
2x\left(x-2\right)+x-2
Factor out 2x in 2x^{2}-4x.
\left(x-2\right)\left(2x+1\right)
Factor out common term x-2 by using distributive property.
x=2 x=-\frac{1}{2}
To find equation solutions, solve x-2=0 and 2x+1=0.
4x^{2}-6x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 4\left(-4\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -6 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 4\left(-4\right)}}{2\times 4}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-16\left(-4\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-6\right)±\sqrt{36+64}}{2\times 4}
Multiply -16 times -4.
x=\frac{-\left(-6\right)±\sqrt{100}}{2\times 4}
Add 36 to 64.
x=\frac{-\left(-6\right)±10}{2\times 4}
Take the square root of 100.
x=\frac{6±10}{2\times 4}
The opposite of -6 is 6.
x=\frac{6±10}{8}
Multiply 2 times 4.
x=\frac{16}{8}
Now solve the equation x=\frac{6±10}{8} when ± is plus. Add 6 to 10.
x=2
Divide 16 by 8.
x=-\frac{4}{8}
Now solve the equation x=\frac{6±10}{8} when ± is minus. Subtract 10 from 6.
x=-\frac{1}{2}
Reduce the fraction \frac{-4}{8} to lowest terms by extracting and canceling out 4.
x=2 x=-\frac{1}{2}
The equation is now solved.
4x^{2}-6x-4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}-6x-4-\left(-4\right)=-\left(-4\right)
Add 4 to both sides of the equation.
4x^{2}-6x=-\left(-4\right)
Subtracting -4 from itself leaves 0.
4x^{2}-6x=4
Subtract -4 from 0.
\frac{4x^{2}-6x}{4}=\frac{4}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{6}{4}\right)x=\frac{4}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{3}{2}x=\frac{4}{4}
Reduce the fraction \frac{-6}{4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{3}{2}x=1
Divide 4 by 4.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=1+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=1+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{25}{16}
Add 1 to \frac{9}{16}.
\left(x-\frac{3}{4}\right)^{2}=\frac{25}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{5}{4} x-\frac{3}{4}=-\frac{5}{4}
Simplify.
x=2 x=-\frac{1}{2}
Add \frac{3}{4} to both sides of the equation.
x ^ 2 -\frac{3}{2}x -1 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 4
r + s = \frac{3}{2} rs = -1
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{3}{4} - u s = \frac{3}{4} + u
Two numbers r and s sum up to \frac{3}{2} exactly when the average of the two numbers is \frac{1}{2}*\frac{3}{2} = \frac{3}{4}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{3}{4} - u) (\frac{3}{4} + u) = -1
To solve for unknown quantity u, substitute these in the product equation rs = -1
\frac{9}{16} - u^2 = -1
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -1-\frac{9}{16} = -\frac{25}{16}
Simplify the expression by subtracting \frac{9}{16} on both sides
u^2 = \frac{25}{16} u = \pm\sqrt{\frac{25}{16}} = \pm \frac{5}{4}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{3}{4} - \frac{5}{4} = -0.500 s = \frac{3}{4} + \frac{5}{4} = 2
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.