Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x-13\right)\left(2x+13\right)=0
Consider 4x^{2}-169. Rewrite 4x^{2}-169 as \left(2x\right)^{2}-13^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{13}{2} x=-\frac{13}{2}
To find equation solutions, solve 2x-13=0 and 2x+13=0.
4x^{2}=169
Add 169 to both sides. Anything plus zero gives itself.
x^{2}=\frac{169}{4}
Divide both sides by 4.
x=\frac{13}{2} x=-\frac{13}{2}
Take the square root of both sides of the equation.
4x^{2}-169=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-169\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 0 for b, and -169 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\left(-169\right)}}{2\times 4}
Square 0.
x=\frac{0±\sqrt{-16\left(-169\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{0±\sqrt{2704}}{2\times 4}
Multiply -16 times -169.
x=\frac{0±52}{2\times 4}
Take the square root of 2704.
x=\frac{0±52}{8}
Multiply 2 times 4.
x=\frac{13}{2}
Now solve the equation x=\frac{0±52}{8} when ± is plus. Reduce the fraction \frac{52}{8} to lowest terms by extracting and canceling out 4.
x=-\frac{13}{2}
Now solve the equation x=\frac{0±52}{8} when ± is minus. Reduce the fraction \frac{-52}{8} to lowest terms by extracting and canceling out 4.
x=\frac{13}{2} x=-\frac{13}{2}
The equation is now solved.