Solve for x
x=-\frac{1}{2}=-0.5
x=4
Graph
Share
Copied to clipboard
2x^{2}-7x-4=0
Divide both sides by 2.
a+b=-7 ab=2\left(-4\right)=-8
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx-4. To find a and b, set up a system to be solved.
1,-8 2,-4
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -8.
1-8=-7 2-4=-2
Calculate the sum for each pair.
a=-8 b=1
The solution is the pair that gives sum -7.
\left(2x^{2}-8x\right)+\left(x-4\right)
Rewrite 2x^{2}-7x-4 as \left(2x^{2}-8x\right)+\left(x-4\right).
2x\left(x-4\right)+x-4
Factor out 2x in 2x^{2}-8x.
\left(x-4\right)\left(2x+1\right)
Factor out common term x-4 by using distributive property.
x=4 x=-\frac{1}{2}
To find equation solutions, solve x-4=0 and 2x+1=0.
4x^{2}-14x-8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 4\left(-8\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -14 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 4\left(-8\right)}}{2\times 4}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196-16\left(-8\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-14\right)±\sqrt{196+128}}{2\times 4}
Multiply -16 times -8.
x=\frac{-\left(-14\right)±\sqrt{324}}{2\times 4}
Add 196 to 128.
x=\frac{-\left(-14\right)±18}{2\times 4}
Take the square root of 324.
x=\frac{14±18}{2\times 4}
The opposite of -14 is 14.
x=\frac{14±18}{8}
Multiply 2 times 4.
x=\frac{32}{8}
Now solve the equation x=\frac{14±18}{8} when ± is plus. Add 14 to 18.
x=4
Divide 32 by 8.
x=-\frac{4}{8}
Now solve the equation x=\frac{14±18}{8} when ± is minus. Subtract 18 from 14.
x=-\frac{1}{2}
Reduce the fraction \frac{-4}{8} to lowest terms by extracting and canceling out 4.
x=4 x=-\frac{1}{2}
The equation is now solved.
4x^{2}-14x-8=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}-14x-8-\left(-8\right)=-\left(-8\right)
Add 8 to both sides of the equation.
4x^{2}-14x=-\left(-8\right)
Subtracting -8 from itself leaves 0.
4x^{2}-14x=8
Subtract -8 from 0.
\frac{4x^{2}-14x}{4}=\frac{8}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{14}{4}\right)x=\frac{8}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{7}{2}x=\frac{8}{4}
Reduce the fraction \frac{-14}{4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{7}{2}x=2
Divide 8 by 4.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=2+\left(-\frac{7}{4}\right)^{2}
Divide -\frac{7}{2}, the coefficient of the x term, by 2 to get -\frac{7}{4}. Then add the square of -\frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{2}x+\frac{49}{16}=2+\frac{49}{16}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{81}{16}
Add 2 to \frac{49}{16}.
\left(x-\frac{7}{4}\right)^{2}=\frac{81}{16}
Factor x^{2}-\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
Take the square root of both sides of the equation.
x-\frac{7}{4}=\frac{9}{4} x-\frac{7}{4}=-\frac{9}{4}
Simplify.
x=4 x=-\frac{1}{2}
Add \frac{7}{4} to both sides of the equation.
x ^ 2 -\frac{7}{2}x -2 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 4
r + s = \frac{7}{2} rs = -2
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{7}{4} - u s = \frac{7}{4} + u
Two numbers r and s sum up to \frac{7}{2} exactly when the average of the two numbers is \frac{1}{2}*\frac{7}{2} = \frac{7}{4}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{7}{4} - u) (\frac{7}{4} + u) = -2
To solve for unknown quantity u, substitute these in the product equation rs = -2
\frac{49}{16} - u^2 = -2
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -2-\frac{49}{16} = -\frac{81}{16}
Simplify the expression by subtracting \frac{49}{16} on both sides
u^2 = \frac{81}{16} u = \pm\sqrt{\frac{81}{16}} = \pm \frac{9}{4}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{7}{4} - \frac{9}{4} = -0.500 s = \frac{7}{4} + \frac{9}{4} = 4
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}