Solve for x (complex solution)
x=\frac{10+\sqrt{38}i}{3}\approx 3.333333333+2.054804668i
x=\frac{-\sqrt{38}i+10}{3}\approx 3.333333333-2.054804668i
Graph
Quiz
Quadratic Equation
5 problems similar to:
4 x ^ { 2 } - 12 x + 27 = \frac { 11 x ^ { 2 } - 3 } { 5 }
Share
Copied to clipboard
20x^{2}-60x+135=11x^{2}-3
Multiply both sides of the equation by 5.
20x^{2}-60x+135-11x^{2}=-3
Subtract 11x^{2} from both sides.
9x^{2}-60x+135=-3
Combine 20x^{2} and -11x^{2} to get 9x^{2}.
9x^{2}-60x+135+3=0
Add 3 to both sides.
9x^{2}-60x+138=0
Add 135 and 3 to get 138.
x=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\times 9\times 138}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -60 for b, and 138 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-60\right)±\sqrt{3600-4\times 9\times 138}}{2\times 9}
Square -60.
x=\frac{-\left(-60\right)±\sqrt{3600-36\times 138}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-60\right)±\sqrt{3600-4968}}{2\times 9}
Multiply -36 times 138.
x=\frac{-\left(-60\right)±\sqrt{-1368}}{2\times 9}
Add 3600 to -4968.
x=\frac{-\left(-60\right)±6\sqrt{38}i}{2\times 9}
Take the square root of -1368.
x=\frac{60±6\sqrt{38}i}{2\times 9}
The opposite of -60 is 60.
x=\frac{60±6\sqrt{38}i}{18}
Multiply 2 times 9.
x=\frac{60+6\sqrt{38}i}{18}
Now solve the equation x=\frac{60±6\sqrt{38}i}{18} when ± is plus. Add 60 to 6i\sqrt{38}.
x=\frac{10+\sqrt{38}i}{3}
Divide 60+6i\sqrt{38} by 18.
x=\frac{-6\sqrt{38}i+60}{18}
Now solve the equation x=\frac{60±6\sqrt{38}i}{18} when ± is minus. Subtract 6i\sqrt{38} from 60.
x=\frac{-\sqrt{38}i+10}{3}
Divide 60-6i\sqrt{38} by 18.
x=\frac{10+\sqrt{38}i}{3} x=\frac{-\sqrt{38}i+10}{3}
The equation is now solved.
20x^{2}-60x+135=11x^{2}-3
Multiply both sides of the equation by 5.
20x^{2}-60x+135-11x^{2}=-3
Subtract 11x^{2} from both sides.
9x^{2}-60x+135=-3
Combine 20x^{2} and -11x^{2} to get 9x^{2}.
9x^{2}-60x=-3-135
Subtract 135 from both sides.
9x^{2}-60x=-138
Subtract 135 from -3 to get -138.
\frac{9x^{2}-60x}{9}=-\frac{138}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{60}{9}\right)x=-\frac{138}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{20}{3}x=-\frac{138}{9}
Reduce the fraction \frac{-60}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{20}{3}x=-\frac{46}{3}
Reduce the fraction \frac{-138}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{20}{3}x+\left(-\frac{10}{3}\right)^{2}=-\frac{46}{3}+\left(-\frac{10}{3}\right)^{2}
Divide -\frac{20}{3}, the coefficient of the x term, by 2 to get -\frac{10}{3}. Then add the square of -\frac{10}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{20}{3}x+\frac{100}{9}=-\frac{46}{3}+\frac{100}{9}
Square -\frac{10}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{20}{3}x+\frac{100}{9}=-\frac{38}{9}
Add -\frac{46}{3} to \frac{100}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{10}{3}\right)^{2}=-\frac{38}{9}
Factor x^{2}-\frac{20}{3}x+\frac{100}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{10}{3}\right)^{2}}=\sqrt{-\frac{38}{9}}
Take the square root of both sides of the equation.
x-\frac{10}{3}=\frac{\sqrt{38}i}{3} x-\frac{10}{3}=-\frac{\sqrt{38}i}{3}
Simplify.
x=\frac{10+\sqrt{38}i}{3} x=\frac{-\sqrt{38}i+10}{3}
Add \frac{10}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}