Solve for x (complex solution)
x=\frac{9+\sqrt{6}i}{2}\approx 4.5+1.224744871i
x=\frac{-\sqrt{6}i+9}{2}\approx 4.5-1.224744871i
Graph
Share
Copied to clipboard
4x^{2}-36x=-87
Subtract 36x from both sides.
4x^{2}-36x+87=0
Add 87 to both sides.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 4\times 87}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -36 for b, and 87 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-36\right)±\sqrt{1296-4\times 4\times 87}}{2\times 4}
Square -36.
x=\frac{-\left(-36\right)±\sqrt{1296-16\times 87}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-36\right)±\sqrt{1296-1392}}{2\times 4}
Multiply -16 times 87.
x=\frac{-\left(-36\right)±\sqrt{-96}}{2\times 4}
Add 1296 to -1392.
x=\frac{-\left(-36\right)±4\sqrt{6}i}{2\times 4}
Take the square root of -96.
x=\frac{36±4\sqrt{6}i}{2\times 4}
The opposite of -36 is 36.
x=\frac{36±4\sqrt{6}i}{8}
Multiply 2 times 4.
x=\frac{36+4\sqrt{6}i}{8}
Now solve the equation x=\frac{36±4\sqrt{6}i}{8} when ± is plus. Add 36 to 4i\sqrt{6}.
x=\frac{9+\sqrt{6}i}{2}
Divide 36+4i\sqrt{6} by 8.
x=\frac{-4\sqrt{6}i+36}{8}
Now solve the equation x=\frac{36±4\sqrt{6}i}{8} when ± is minus. Subtract 4i\sqrt{6} from 36.
x=\frac{-\sqrt{6}i+9}{2}
Divide 36-4i\sqrt{6} by 8.
x=\frac{9+\sqrt{6}i}{2} x=\frac{-\sqrt{6}i+9}{2}
The equation is now solved.
4x^{2}-36x=-87
Subtract 36x from both sides.
\frac{4x^{2}-36x}{4}=-\frac{87}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{36}{4}\right)x=-\frac{87}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-9x=-\frac{87}{4}
Divide -36 by 4.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-\frac{87}{4}+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-9x+\frac{81}{4}=\frac{-87+81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-9x+\frac{81}{4}=-\frac{3}{2}
Add -\frac{87}{4} to \frac{81}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{2}\right)^{2}=-\frac{3}{2}
Factor x^{2}-9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{-\frac{3}{2}}
Take the square root of both sides of the equation.
x-\frac{9}{2}=\frac{\sqrt{6}i}{2} x-\frac{9}{2}=-\frac{\sqrt{6}i}{2}
Simplify.
x=\frac{9+\sqrt{6}i}{2} x=\frac{-\sqrt{6}i+9}{2}
Add \frac{9}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}