Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-15=-14x
Subtract 15 from both sides.
4x^{2}-15+14x=0
Add 14x to both sides.
4x^{2}+14x-15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-14±\sqrt{14^{2}-4\times 4\left(-15\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 14 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\times 4\left(-15\right)}}{2\times 4}
Square 14.
x=\frac{-14±\sqrt{196-16\left(-15\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-14±\sqrt{196+240}}{2\times 4}
Multiply -16 times -15.
x=\frac{-14±\sqrt{436}}{2\times 4}
Add 196 to 240.
x=\frac{-14±2\sqrt{109}}{2\times 4}
Take the square root of 436.
x=\frac{-14±2\sqrt{109}}{8}
Multiply 2 times 4.
x=\frac{2\sqrt{109}-14}{8}
Now solve the equation x=\frac{-14±2\sqrt{109}}{8} when ± is plus. Add -14 to 2\sqrt{109}.
x=\frac{\sqrt{109}-7}{4}
Divide -14+2\sqrt{109} by 8.
x=\frac{-2\sqrt{109}-14}{8}
Now solve the equation x=\frac{-14±2\sqrt{109}}{8} when ± is minus. Subtract 2\sqrt{109} from -14.
x=\frac{-\sqrt{109}-7}{4}
Divide -14-2\sqrt{109} by 8.
x=\frac{\sqrt{109}-7}{4} x=\frac{-\sqrt{109}-7}{4}
The equation is now solved.
4x^{2}+14x=15
Add 14x to both sides.
\frac{4x^{2}+14x}{4}=\frac{15}{4}
Divide both sides by 4.
x^{2}+\frac{14}{4}x=\frac{15}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{7}{2}x=\frac{15}{4}
Reduce the fraction \frac{14}{4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=\frac{15}{4}+\left(\frac{7}{4}\right)^{2}
Divide \frac{7}{2}, the coefficient of the x term, by 2 to get \frac{7}{4}. Then add the square of \frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{15}{4}+\frac{49}{16}
Square \frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{109}{16}
Add \frac{15}{4} to \frac{49}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{4}\right)^{2}=\frac{109}{16}
Factor x^{2}+\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{109}{16}}
Take the square root of both sides of the equation.
x+\frac{7}{4}=\frac{\sqrt{109}}{4} x+\frac{7}{4}=-\frac{\sqrt{109}}{4}
Simplify.
x=\frac{\sqrt{109}-7}{4} x=\frac{-\sqrt{109}-7}{4}
Subtract \frac{7}{4} from both sides of the equation.