Solve for x (complex solution)
x=\frac{5+\sqrt{11}i}{4}\approx 1.25+0.829156198i
x=\frac{-\sqrt{11}i+5}{4}\approx 1.25-0.829156198i
Graph
Share
Copied to clipboard
4x^{2}-10x=-9
Subtract 10x from both sides.
4x^{2}-10x+9=0
Add 9 to both sides.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 4\times 9}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -10 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 4\times 9}}{2\times 4}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-16\times 9}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-10\right)±\sqrt{100-144}}{2\times 4}
Multiply -16 times 9.
x=\frac{-\left(-10\right)±\sqrt{-44}}{2\times 4}
Add 100 to -144.
x=\frac{-\left(-10\right)±2\sqrt{11}i}{2\times 4}
Take the square root of -44.
x=\frac{10±2\sqrt{11}i}{2\times 4}
The opposite of -10 is 10.
x=\frac{10±2\sqrt{11}i}{8}
Multiply 2 times 4.
x=\frac{10+2\sqrt{11}i}{8}
Now solve the equation x=\frac{10±2\sqrt{11}i}{8} when ± is plus. Add 10 to 2i\sqrt{11}.
x=\frac{5+\sqrt{11}i}{4}
Divide 10+2i\sqrt{11} by 8.
x=\frac{-2\sqrt{11}i+10}{8}
Now solve the equation x=\frac{10±2\sqrt{11}i}{8} when ± is minus. Subtract 2i\sqrt{11} from 10.
x=\frac{-\sqrt{11}i+5}{4}
Divide 10-2i\sqrt{11} by 8.
x=\frac{5+\sqrt{11}i}{4} x=\frac{-\sqrt{11}i+5}{4}
The equation is now solved.
4x^{2}-10x=-9
Subtract 10x from both sides.
\frac{4x^{2}-10x}{4}=-\frac{9}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{10}{4}\right)x=-\frac{9}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{5}{2}x=-\frac{9}{4}
Reduce the fraction \frac{-10}{4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=-\frac{9}{4}+\left(-\frac{5}{4}\right)^{2}
Divide -\frac{5}{2}, the coefficient of the x term, by 2 to get -\frac{5}{4}. Then add the square of -\frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{2}x+\frac{25}{16}=-\frac{9}{4}+\frac{25}{16}
Square -\frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{2}x+\frac{25}{16}=-\frac{11}{16}
Add -\frac{9}{4} to \frac{25}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{4}\right)^{2}=-\frac{11}{16}
Factor x^{2}-\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{-\frac{11}{16}}
Take the square root of both sides of the equation.
x-\frac{5}{4}=\frac{\sqrt{11}i}{4} x-\frac{5}{4}=-\frac{\sqrt{11}i}{4}
Simplify.
x=\frac{5+\sqrt{11}i}{4} x=\frac{-\sqrt{11}i+5}{4}
Add \frac{5}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}