Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+6x-7=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\times 4\left(-7\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 4 for a, 6 for b, and -7 for c in the quadratic formula.
x=\frac{-6±2\sqrt{37}}{8}
Do the calculations.
x=\frac{\sqrt{37}-3}{4} x=\frac{-\sqrt{37}-3}{4}
Solve the equation x=\frac{-6±2\sqrt{37}}{8} when ± is plus and when ± is minus.
4\left(x-\frac{\sqrt{37}-3}{4}\right)\left(x-\frac{-\sqrt{37}-3}{4}\right)\leq 0
Rewrite the inequality by using the obtained solutions.
x-\frac{\sqrt{37}-3}{4}\geq 0 x-\frac{-\sqrt{37}-3}{4}\leq 0
For the product to be ≤0, one of the values x-\frac{\sqrt{37}-3}{4} and x-\frac{-\sqrt{37}-3}{4} has to be ≥0 and the other has to be ≤0. Consider the case when x-\frac{\sqrt{37}-3}{4}\geq 0 and x-\frac{-\sqrt{37}-3}{4}\leq 0.
x\in \emptyset
This is false for any x.
x-\frac{-\sqrt{37}-3}{4}\geq 0 x-\frac{\sqrt{37}-3}{4}\leq 0
Consider the case when x-\frac{\sqrt{37}-3}{4}\leq 0 and x-\frac{-\sqrt{37}-3}{4}\geq 0.
x\in \begin{bmatrix}\frac{-\sqrt{37}-3}{4},\frac{\sqrt{37}-3}{4}\end{bmatrix}
The solution satisfying both inequalities is x\in \left[\frac{-\sqrt{37}-3}{4},\frac{\sqrt{37}-3}{4}\right].
x\in \begin{bmatrix}\frac{-\sqrt{37}-3}{4},\frac{\sqrt{37}-3}{4}\end{bmatrix}
The final solution is the union of the obtained solutions.