Factor
2\left(2x-5\right)\left(x+4\right)
Evaluate
2\left(2x-5\right)\left(x+4\right)
Graph
Share
Copied to clipboard
2\left(2x^{2}+3x-20\right)
Factor out 2.
a+b=3 ab=2\left(-20\right)=-40
Consider 2x^{2}+3x-20. Factor the expression by grouping. First, the expression needs to be rewritten as 2x^{2}+ax+bx-20. To find a and b, set up a system to be solved.
-1,40 -2,20 -4,10 -5,8
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -40.
-1+40=39 -2+20=18 -4+10=6 -5+8=3
Calculate the sum for each pair.
a=-5 b=8
The solution is the pair that gives sum 3.
\left(2x^{2}-5x\right)+\left(8x-20\right)
Rewrite 2x^{2}+3x-20 as \left(2x^{2}-5x\right)+\left(8x-20\right).
x\left(2x-5\right)+4\left(2x-5\right)
Factor out x in the first and 4 in the second group.
\left(2x-5\right)\left(x+4\right)
Factor out common term 2x-5 by using distributive property.
2\left(2x-5\right)\left(x+4\right)
Rewrite the complete factored expression.
4x^{2}+6x-40=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\times 4\left(-40\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{36-4\times 4\left(-40\right)}}{2\times 4}
Square 6.
x=\frac{-6±\sqrt{36-16\left(-40\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-6±\sqrt{36+640}}{2\times 4}
Multiply -16 times -40.
x=\frac{-6±\sqrt{676}}{2\times 4}
Add 36 to 640.
x=\frac{-6±26}{2\times 4}
Take the square root of 676.
x=\frac{-6±26}{8}
Multiply 2 times 4.
x=\frac{20}{8}
Now solve the equation x=\frac{-6±26}{8} when ± is plus. Add -6 to 26.
x=\frac{5}{2}
Reduce the fraction \frac{20}{8} to lowest terms by extracting and canceling out 4.
x=-\frac{32}{8}
Now solve the equation x=\frac{-6±26}{8} when ± is minus. Subtract 26 from -6.
x=-4
Divide -32 by 8.
4x^{2}+6x-40=4\left(x-\frac{5}{2}\right)\left(x-\left(-4\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{2} for x_{1} and -4 for x_{2}.
4x^{2}+6x-40=4\left(x-\frac{5}{2}\right)\left(x+4\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
4x^{2}+6x-40=4\times \frac{2x-5}{2}\left(x+4\right)
Subtract \frac{5}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
4x^{2}+6x-40=2\left(2x-5\right)\left(x+4\right)
Cancel out 2, the greatest common factor in 4 and 2.
x ^ 2 +\frac{3}{2}x -10 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 4
r + s = -\frac{3}{2} rs = -10
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{3}{4} - u s = -\frac{3}{4} + u
Two numbers r and s sum up to -\frac{3}{2} exactly when the average of the two numbers is \frac{1}{2}*-\frac{3}{2} = -\frac{3}{4}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{3}{4} - u) (-\frac{3}{4} + u) = -10
To solve for unknown quantity u, substitute these in the product equation rs = -10
\frac{9}{16} - u^2 = -10
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -10-\frac{9}{16} = -\frac{169}{16}
Simplify the expression by subtracting \frac{9}{16} on both sides
u^2 = \frac{169}{16} u = \pm\sqrt{\frac{169}{16}} = \pm \frac{13}{4}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{3}{4} - \frac{13}{4} = -4 s = -\frac{3}{4} + \frac{13}{4} = 2.500
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}