Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}=100-5
Subtract 5 from both sides.
4x^{2}=95
Subtract 5 from 100 to get 95.
x^{2}=\frac{95}{4}
Divide both sides by 4.
x=\frac{\sqrt{95}}{2} x=-\frac{\sqrt{95}}{2}
Take the square root of both sides of the equation.
4x^{2}+5-100=0
Subtract 100 from both sides.
4x^{2}-95=0
Subtract 100 from 5 to get -95.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-95\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 0 for b, and -95 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\left(-95\right)}}{2\times 4}
Square 0.
x=\frac{0±\sqrt{-16\left(-95\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{0±\sqrt{1520}}{2\times 4}
Multiply -16 times -95.
x=\frac{0±4\sqrt{95}}{2\times 4}
Take the square root of 1520.
x=\frac{0±4\sqrt{95}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{95}}{2}
Now solve the equation x=\frac{0±4\sqrt{95}}{8} when ± is plus.
x=-\frac{\sqrt{95}}{2}
Now solve the equation x=\frac{0±4\sqrt{95}}{8} when ± is minus.
x=\frac{\sqrt{95}}{2} x=-\frac{\sqrt{95}}{2}
The equation is now solved.