Solve for x (complex solution)
x=\frac{-3+\sqrt{55}i}{8}\approx -0.375+0.927024811i
x=\frac{-\sqrt{55}i-3}{8}\approx -0.375-0.927024811i
Graph
Share
Copied to clipboard
4x^{2}+3x+8=4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4x^{2}+3x+8-4=4-4
Subtract 4 from both sides of the equation.
4x^{2}+3x+8-4=0
Subtracting 4 from itself leaves 0.
4x^{2}+3x+4=0
Subtract 4 from 8.
x=\frac{-3±\sqrt{3^{2}-4\times 4\times 4}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 3 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 4\times 4}}{2\times 4}
Square 3.
x=\frac{-3±\sqrt{9-16\times 4}}{2\times 4}
Multiply -4 times 4.
x=\frac{-3±\sqrt{9-64}}{2\times 4}
Multiply -16 times 4.
x=\frac{-3±\sqrt{-55}}{2\times 4}
Add 9 to -64.
x=\frac{-3±\sqrt{55}i}{2\times 4}
Take the square root of -55.
x=\frac{-3±\sqrt{55}i}{8}
Multiply 2 times 4.
x=\frac{-3+\sqrt{55}i}{8}
Now solve the equation x=\frac{-3±\sqrt{55}i}{8} when ± is plus. Add -3 to i\sqrt{55}.
x=\frac{-\sqrt{55}i-3}{8}
Now solve the equation x=\frac{-3±\sqrt{55}i}{8} when ± is minus. Subtract i\sqrt{55} from -3.
x=\frac{-3+\sqrt{55}i}{8} x=\frac{-\sqrt{55}i-3}{8}
The equation is now solved.
4x^{2}+3x+8=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}+3x+8-8=4-8
Subtract 8 from both sides of the equation.
4x^{2}+3x=4-8
Subtracting 8 from itself leaves 0.
4x^{2}+3x=-4
Subtract 8 from 4.
\frac{4x^{2}+3x}{4}=-\frac{4}{4}
Divide both sides by 4.
x^{2}+\frac{3}{4}x=-\frac{4}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{3}{4}x=-1
Divide -4 by 4.
x^{2}+\frac{3}{4}x+\left(\frac{3}{8}\right)^{2}=-1+\left(\frac{3}{8}\right)^{2}
Divide \frac{3}{4}, the coefficient of the x term, by 2 to get \frac{3}{8}. Then add the square of \frac{3}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{4}x+\frac{9}{64}=-1+\frac{9}{64}
Square \frac{3}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{4}x+\frac{9}{64}=-\frac{55}{64}
Add -1 to \frac{9}{64}.
\left(x+\frac{3}{8}\right)^{2}=-\frac{55}{64}
Factor x^{2}+\frac{3}{4}x+\frac{9}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{8}\right)^{2}}=\sqrt{-\frac{55}{64}}
Take the square root of both sides of the equation.
x+\frac{3}{8}=\frac{\sqrt{55}i}{8} x+\frac{3}{8}=-\frac{\sqrt{55}i}{8}
Simplify.
x=\frac{-3+\sqrt{55}i}{8} x=\frac{-\sqrt{55}i-3}{8}
Subtract \frac{3}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}