Solve for x
x = \frac{\sqrt{5} + 3}{4} \approx 1.309016994
x=\frac{3-\sqrt{5}}{4}\approx 0.190983006
Graph
Share
Copied to clipboard
4x^{2}+1-6x=0
Subtract 6x from both sides.
4x^{2}-6x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 4}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -6 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 4}}{2\times 4}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-16}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-6\right)±\sqrt{20}}{2\times 4}
Add 36 to -16.
x=\frac{-\left(-6\right)±2\sqrt{5}}{2\times 4}
Take the square root of 20.
x=\frac{6±2\sqrt{5}}{2\times 4}
The opposite of -6 is 6.
x=\frac{6±2\sqrt{5}}{8}
Multiply 2 times 4.
x=\frac{2\sqrt{5}+6}{8}
Now solve the equation x=\frac{6±2\sqrt{5}}{8} when ± is plus. Add 6 to 2\sqrt{5}.
x=\frac{\sqrt{5}+3}{4}
Divide 6+2\sqrt{5} by 8.
x=\frac{6-2\sqrt{5}}{8}
Now solve the equation x=\frac{6±2\sqrt{5}}{8} when ± is minus. Subtract 2\sqrt{5} from 6.
x=\frac{3-\sqrt{5}}{4}
Divide 6-2\sqrt{5} by 8.
x=\frac{\sqrt{5}+3}{4} x=\frac{3-\sqrt{5}}{4}
The equation is now solved.
4x^{2}+1-6x=0
Subtract 6x from both sides.
4x^{2}-6x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\frac{4x^{2}-6x}{4}=-\frac{1}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{6}{4}\right)x=-\frac{1}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{3}{2}x=-\frac{1}{4}
Reduce the fraction \frac{-6}{4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-\frac{1}{4}+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{1}{4}+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{5}{16}
Add -\frac{1}{4} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{4}\right)^{2}=\frac{5}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{5}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{\sqrt{5}}{4} x-\frac{3}{4}=-\frac{\sqrt{5}}{4}
Simplify.
x=\frac{\sqrt{5}+3}{4} x=\frac{3-\sqrt{5}}{4}
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}