Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+1-12x=0
Subtract 12x from both sides.
4x^{2}-12x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -12 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4}}{2\times 4}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-16}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-12\right)±\sqrt{128}}{2\times 4}
Add 144 to -16.
x=\frac{-\left(-12\right)±8\sqrt{2}}{2\times 4}
Take the square root of 128.
x=\frac{12±8\sqrt{2}}{2\times 4}
The opposite of -12 is 12.
x=\frac{12±8\sqrt{2}}{8}
Multiply 2 times 4.
x=\frac{8\sqrt{2}+12}{8}
Now solve the equation x=\frac{12±8\sqrt{2}}{8} when ± is plus. Add 12 to 8\sqrt{2}.
x=\sqrt{2}+\frac{3}{2}
Divide 12+8\sqrt{2} by 8.
x=\frac{12-8\sqrt{2}}{8}
Now solve the equation x=\frac{12±8\sqrt{2}}{8} when ± is minus. Subtract 8\sqrt{2} from 12.
x=\frac{3}{2}-\sqrt{2}
Divide 12-8\sqrt{2} by 8.
x=\sqrt{2}+\frac{3}{2} x=\frac{3}{2}-\sqrt{2}
The equation is now solved.
4x^{2}+1-12x=0
Subtract 12x from both sides.
4x^{2}-12x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\frac{4x^{2}-12x}{4}=-\frac{1}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{12}{4}\right)x=-\frac{1}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-3x=-\frac{1}{4}
Divide -12 by 4.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{1}{4}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=\frac{-1+9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=2
Add -\frac{1}{4} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{2}\right)^{2}=2
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{2}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\sqrt{2} x-\frac{3}{2}=-\sqrt{2}
Simplify.
x=\sqrt{2}+\frac{3}{2} x=\frac{3}{2}-\sqrt{2}
Add \frac{3}{2} to both sides of the equation.