Solve for x
x=\frac{8}{17}\approx 0.470588235
Graph
Share
Copied to clipboard
4x-1=\sqrt{1-x^{2}}
Subtract 1 from both sides of the equation.
\left(4x-1\right)^{2}=\left(\sqrt{1-x^{2}}\right)^{2}
Square both sides of the equation.
16x^{2}-8x+1=\left(\sqrt{1-x^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-1\right)^{2}.
16x^{2}-8x+1=1-x^{2}
Calculate \sqrt{1-x^{2}} to the power of 2 and get 1-x^{2}.
16x^{2}-8x+1-1=-x^{2}
Subtract 1 from both sides.
16x^{2}-8x=-x^{2}
Subtract 1 from 1 to get 0.
16x^{2}-8x+x^{2}=0
Add x^{2} to both sides.
17x^{2}-8x=0
Combine 16x^{2} and x^{2} to get 17x^{2}.
x\left(17x-8\right)=0
Factor out x.
x=0 x=\frac{8}{17}
To find equation solutions, solve x=0 and 17x-8=0.
4\times 0=1+\sqrt{1-0^{2}}
Substitute 0 for x in the equation 4x=1+\sqrt{1-x^{2}}.
0=2
Simplify. The value x=0 does not satisfy the equation.
4\times \frac{8}{17}=1+\sqrt{1-\left(\frac{8}{17}\right)^{2}}
Substitute \frac{8}{17} for x in the equation 4x=1+\sqrt{1-x^{2}}.
\frac{32}{17}=\frac{32}{17}
Simplify. The value x=\frac{8}{17} satisfies the equation.
x=\frac{8}{17}
Equation 4x-1=\sqrt{1-x^{2}} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}