Solve for x
x=-\frac{y+1}{2\left(y+2\right)}
y\neq -2
Solve for y
y=-\frac{4x+1}{2x+1}
x\neq -\frac{1}{2}
Graph
Share
Copied to clipboard
4x+2xy+1=-y
Subtract y from both sides. Anything subtracted from zero gives its negation.
4x+2xy=-y-1
Subtract 1 from both sides.
\left(4+2y\right)x=-y-1
Combine all terms containing x.
\left(2y+4\right)x=-y-1
The equation is in standard form.
\frac{\left(2y+4\right)x}{2y+4}=\frac{-y-1}{2y+4}
Divide both sides by 4+2y.
x=\frac{-y-1}{2y+4}
Dividing by 4+2y undoes the multiplication by 4+2y.
x=-\frac{y+1}{2\left(y+2\right)}
Divide -y-1 by 4+2y.
y+2xy+1=-4x
Subtract 4x from both sides. Anything subtracted from zero gives its negation.
y+2xy=-4x-1
Subtract 1 from both sides.
\left(1+2x\right)y=-4x-1
Combine all terms containing y.
\left(2x+1\right)y=-4x-1
The equation is in standard form.
\frac{\left(2x+1\right)y}{2x+1}=\frac{-4x-1}{2x+1}
Divide both sides by 1+2x.
y=\frac{-4x-1}{2x+1}
Dividing by 1+2x undoes the multiplication by 1+2x.
y=-\frac{4x+1}{2x+1}
Divide -4x-1 by 1+2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}