Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x+5-\frac{1}{2}x^{2}=0
Subtract \frac{1}{2}x^{2} from both sides.
-\frac{1}{2}x^{2}+4x+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\left(-\frac{1}{2}\right)\times 5}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, 4 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-\frac{1}{2}\right)\times 5}}{2\left(-\frac{1}{2}\right)}
Square 4.
x=\frac{-4±\sqrt{16+2\times 5}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{-4±\sqrt{16+10}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times 5.
x=\frac{-4±\sqrt{26}}{2\left(-\frac{1}{2}\right)}
Add 16 to 10.
x=\frac{-4±\sqrt{26}}{-1}
Multiply 2 times -\frac{1}{2}.
x=\frac{\sqrt{26}-4}{-1}
Now solve the equation x=\frac{-4±\sqrt{26}}{-1} when ± is plus. Add -4 to \sqrt{26}.
x=4-\sqrt{26}
Divide -4+\sqrt{26} by -1.
x=\frac{-\sqrt{26}-4}{-1}
Now solve the equation x=\frac{-4±\sqrt{26}}{-1} when ± is minus. Subtract \sqrt{26} from -4.
x=\sqrt{26}+4
Divide -4-\sqrt{26} by -1.
x=4-\sqrt{26} x=\sqrt{26}+4
The equation is now solved.
4x+5-\frac{1}{2}x^{2}=0
Subtract \frac{1}{2}x^{2} from both sides.
4x-\frac{1}{2}x^{2}=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
-\frac{1}{2}x^{2}+4x=-5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{2}x^{2}+4x}{-\frac{1}{2}}=-\frac{5}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\frac{4}{-\frac{1}{2}}x=-\frac{5}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}-8x=-\frac{5}{-\frac{1}{2}}
Divide 4 by -\frac{1}{2} by multiplying 4 by the reciprocal of -\frac{1}{2}.
x^{2}-8x=10
Divide -5 by -\frac{1}{2} by multiplying -5 by the reciprocal of -\frac{1}{2}.
x^{2}-8x+\left(-4\right)^{2}=10+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=10+16
Square -4.
x^{2}-8x+16=26
Add 10 to 16.
\left(x-4\right)^{2}=26
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{26}
Take the square root of both sides of the equation.
x-4=\sqrt{26} x-4=-\sqrt{26}
Simplify.
x=\sqrt{26}+4 x=4-\sqrt{26}
Add 4 to both sides of the equation.