4 x + 4,8 + 2,4 x = x ^ { 2 } + 2 x
Solve for x
x = \frac{\sqrt{241} + 11}{5} \approx 5.304834939
x=\frac{11-\sqrt{241}}{5}\approx -0.904834939
Graph
Share
Copied to clipboard
6,4x+4,8=x^{2}+2x
Combine 4x and 2,4x to get 6,4x.
6,4x+4,8-x^{2}=2x
Subtract x^{2} from both sides.
6,4x+4,8-x^{2}-2x=0
Subtract 2x from both sides.
4,4x+4,8-x^{2}=0
Combine 6,4x and -2x to get 4,4x.
-x^{2}+4,4x+4,8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4,4±\sqrt{4,4^{2}-4\left(-1\right)\times 4,8}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 4,4 for b, and 4,8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4,4±\sqrt{19,36-4\left(-1\right)\times 4,8}}{2\left(-1\right)}
Square 4,4 by squaring both the numerator and the denominator of the fraction.
x=\frac{-4,4±\sqrt{19,36+4\times 4,8}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-4,4±\sqrt{19,36+19,2}}{2\left(-1\right)}
Multiply 4 times 4,8.
x=\frac{-4,4±\sqrt{38,56}}{2\left(-1\right)}
Add 19,36 to 19,2 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-4,4±\frac{2\sqrt{241}}{5}}{2\left(-1\right)}
Take the square root of 38,56.
x=\frac{-4,4±\frac{2\sqrt{241}}{5}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{241}-22}{-2\times 5}
Now solve the equation x=\frac{-4,4±\frac{2\sqrt{241}}{5}}{-2} when ± is plus. Add -4,4 to \frac{2\sqrt{241}}{5}.
x=\frac{11-\sqrt{241}}{5}
Divide \frac{-22+2\sqrt{241}}{5} by -2.
x=\frac{-2\sqrt{241}-22}{-2\times 5}
Now solve the equation x=\frac{-4,4±\frac{2\sqrt{241}}{5}}{-2} when ± is minus. Subtract \frac{2\sqrt{241}}{5} from -4,4.
x=\frac{\sqrt{241}+11}{5}
Divide \frac{-22-2\sqrt{241}}{5} by -2.
x=\frac{11-\sqrt{241}}{5} x=\frac{\sqrt{241}+11}{5}
The equation is now solved.
6,4x+4,8=x^{2}+2x
Combine 4x and 2,4x to get 6,4x.
6,4x+4,8-x^{2}=2x
Subtract x^{2} from both sides.
6,4x+4,8-x^{2}-2x=0
Subtract 2x from both sides.
4,4x+4,8-x^{2}=0
Combine 6,4x and -2x to get 4,4x.
4,4x-x^{2}=-4,8
Subtract 4,8 from both sides. Anything subtracted from zero gives its negation.
-x^{2}+4,4x=-4,8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+4,4x}{-1}=-\frac{4,8}{-1}
Divide both sides by -1.
x^{2}+\frac{4,4}{-1}x=-\frac{4,8}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-4,4x=-\frac{4,8}{-1}
Divide 4,4 by -1.
x^{2}-4,4x=4,8
Divide -4,8 by -1.
x^{2}-4,4x+\left(-2,2\right)^{2}=4,8+\left(-2,2\right)^{2}
Divide -4,4, the coefficient of the x term, by 2 to get -2,2. Then add the square of -2,2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4,4x+4,84=4,8+4,84
Square -2,2 by squaring both the numerator and the denominator of the fraction.
x^{2}-4,4x+4,84=9,64
Add 4,8 to 4,84 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-2,2\right)^{2}=9,64
Factor x^{2}-4,4x+4,84. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2,2\right)^{2}}=\sqrt{9,64}
Take the square root of both sides of the equation.
x-2,2=\frac{\sqrt{241}}{5} x-2,2=-\frac{\sqrt{241}}{5}
Simplify.
x=\frac{\sqrt{241}+11}{5} x=\frac{11-\sqrt{241}}{5}
Add 2,2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}